Integrate machine learning models into your app using Core ML.

Core ML Documentation

Post

Replies

Boosts

Views

Activity

How to Ensure Quantized Models Run on ANE on iPhone 15 (iOS 18 Beta 8)
When I use CoreML to infer a w8a8 model on iPhone 15 (iOS 18 beta 8), the model uses CPU inference instead of ANE, which results in slower inference speed. The model I am using is from the coremltools documentation, which indicates that on iOS 17, quantized models can run on ANE properly and achieve faster speeds. How can I make the quantized model run correctly on ANE to achieve the desired inference speed? To reproduce this issue, you can download the Weight & Activation quantized model from the following link: https://apple.github.io/coremltools/docs-guides/source/opt-quantization-perf.html.
0
0
360
Sep ’24
UI interface for on device LLMs / Foundation models
I was watching wwdc2024 Deploy machine learning and AI models on-device with Core ML (https://developer.apple.com/videos/play/wwdc2024/10161/) and speaker was showing UI interface where he was ruining on device LLMs / Foundation models. I was wondering if this UI interface is open source and I can download and play around with similar app what was shown:
2
1
432
Aug ’24
Vision framework not working on Apple Vision Pro
com.apple.Vision Code=9 "Could not build inference plan - ANECF error: failed to load ANE model file:///System/Library/Frameworks/ Vision.framework/anodv4_drop6_fp16.H14G.espresso.hwx Code rise this error: func imageToHeadBox(image: CVPixelBuffer) async throws -> [CGRect] { let request:DetectFaceRectanglesRequest = DetectFaceRectanglesRequest() let faceResult:[FaceObservation] = try await request.perform(on: image) let faceBoxs:[CGRect] = faceResult.map { face in let faceBoundingBox:CGRect = face.boundingBox.cgRect return faceBoundingBox } return faceBoxs }
1
0
493
Aug ’24
how speed up modelWithContentsOfURL function?
Recently, deep learning projects have been getting larger, and sometimes loading models has become a bottleneck. I download the .mlpackage format CoreML from the internet and need to use compileModelAtURL to convert the .mlpackage into an .mlmodelc, then call modelWithContentsOfURL to convert the .mlmodelc into a handle. Generally, generating a handle with modelWithContentsOfURL is very slow. I noticed from WWDC 2023 that it is possible to cache the compiled results (see https://developer.apple.com/videos/play/wwdc2023/10049/?time=677, which states "This compilation includes further optimizations for the specific compute device and outputs an artifact that the compute device can run. Once complete, Core ML caches these artifacts to be used for subsequent model loads."). However, it seems that I couldn't find how to cache in the documentation.
1
0
408
Aug ’24
MLTensor computation took more time than expected.
func testMLTensor() { let t1 = MLTensor(shape: [2000, 1], scalars: [Float](repeating: Float.random(in: 0.0...10.0), count: 2000), scalarType: Float.self) let t2 = MLTensor(shape: [1, 3000], scalars: [Float](repeating: Float.random(in: 0.0...10.0), count: 3000), scalarType: Float.self) for _ in 0...50 { let t = Date() let x = (t1 * t2) print("MLTensor", t.timeIntervalSinceNow * 1000, "ms") } } testMLTensor() The above code took more time than expected, especially in the early stage of iteration.
1
0
402
Aug ’24
MLTensor computation took more time than expected.
func testMLTensor() { let t1 = MLTensor(shape: [2000, 1], scalars: [Float](repeating: Float.random(in: 0.0...10.0), count: 2000), scalarType: Float.self) let t2 = MLTensor(shape: [1, 3000], scalars: [Float](repeating: Float.random(in: 0.0...10.0), count: 3000), scalarType: Float.self) for _ in 0...50 { let t = Date() let x = (t1 * t2) print("MLTensor", t.timeIntervalSinceNow * 1000, "ms") } } testMLTensor() The above code took more time than expected, especially in the early stage of iteration.
0
0
304
Aug ’24
MLTensor computation took more time than expected.
func testMLTensor() { let t1 = MLTensor(shape: [2000, 1], scalars: [Float](repeating: Float.random(in: 0.0...10.0), count: 2000), scalarType: Float.self) let t2 = MLTensor(shape: [1, 3000], scalars: [Float](repeating: Float.random(in: 0.0...10.0), count: 3000), scalarType: Float.self) for _ in 0...50 { let t = Date() let x = (t1 * t2) print("MLTensor", t.timeIntervalSinceNow * 1000, "ms") } } testMLTensor() The above code took more time than expected, especially in the early stage of iteration.
0
0
263
Aug ’24
CoreML Crash on iOS18 Beta5
Hello, My App works well on iOS17 and previous iOS18 Beta version, while it crashes on latest iOS18 Beta5, when it calling model predictionFromFeatures. Calling stack of crash is as: *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: 'Unrecognized ANE execution priority MLANEExecutionPriority_Unspecified' Last Exception Backtrace: 0 CoreFoundation 0x000000019bd6408c __exceptionPreprocess + 164 1 libobjc.A.dylib 0x000000019906b2e4 objc_exception_throw + 88 2 CoreFoundation 0x000000019be5f648 -[NSException initWithCoder:] 3 CoreML 0x00000001b7507340 -[MLE5ExecutionStream _setANEExecutionPriorityWithOptions:] + 248 4 CoreML 0x00000001b7508374 -[MLE5ExecutionStream _prepareForInputFeatures:options:error:] + 248 5 CoreML 0x00000001b7507ddc -[MLE5ExecutionStream executeForInputFeatures:options:error:] + 68 6 CoreML 0x00000001b74ce5c4 -[MLE5Engine _predictionFromFeatures:stream:options:error:] + 80 7 CoreML 0x00000001b74ce7fc -[MLE5Engine _predictionFromFeatures:options:error:] + 208 8 CoreML 0x00000001b74cf110 -[MLE5Engine _predictionFromFeatures:usingState:options:error:] + 400 9 CoreML 0x00000001b74cf270 -[MLE5Engine predictionFromFeatures:options:error:] + 96 10 CoreML 0x00000001b74ab264 -[MLDelegateModel _predictionFromFeatures:usingState:options:error:] + 684 11 CoreML 0x00000001b70991bc -[MLDelegateModel predictionFromFeatures:options:error:] + 124 And my model file type is ml package file. Source code is as below: //model MLModel *_model; ...... // model init MLModelConfiguration* config = [[MLModelConfiguration alloc]init]; config.computeUnits = MLComputeUnitsCPUAndNeuralEngine; _model = [MLModel modelWithContentsOfURL:compileUrl configuration:config error:&error]; ..... // model prediction MLPredictionOptions *option = [[MLPredictionOptions alloc]init]; id<MLFeatureProvider> outFeatures = [_model predictionFromFeatures:_modelInput options:option error:&error]; Is there anything wrong? Any advice would be appreciated.
3
1
518
Aug ’24
Loading CoreML model increases app size?
Hi, i have been noticing some strange issues with using CoreML models in my app. I am using the Whisper.cpp implementation which has a coreML option. This speeds up the transcribing vs Metal. However every time i use it, the app size inside iphone settings -> General -> Storage increases - specifically the "documents and data" part, the bundle size stays consistent. The Size of the app seems to increase by the same size of the coreml model, and after a few reloads it can increase to over 3-4gb! I thought that maybe the coreml model (which is in the bundle) is being saved to file - but i can't see where, i have tried to use instruments and xcode plus lots of printing out of cache and temp directory etc, deleting the caches etc.. but no effect. I have downloaded the container of the iphone from xcode and inspected it, there are some files stored inthe cache but only a few kbs, and even though the value in the settings-> storage shows a few gb, the container is only a few mb. Please can someone help or give me some guidance on what to do to figure out why the documents and data is increasing? where could this folder be pointing to that is not in the xcode downloaded container?? This is the repo i am using https://github.com/ggerganov/whisper.cpp the swiftui app and objective-C app both do the same thing i am witnessing when using coreml. Thanks in advance for any help, i am totally baffled by this behaviour
6
3
1.1k
May ’24
iOS 18.1 beta - App crashes at runtime while using Translation.TranslationError in project
I'm trying to cast the error thrown by TranslationSession.translations(from:) as Translation.TranslationError. However, the app crashes at runtime whenever Translation.TranslationError is used in the project. Environment: iOS Version: 18.1 beta Xcode Version: 16 beta yld[14615]: Symbol not found: _$s11Translation0A5ErrorVMa Referenced from: <3426152D-A738-30C1-8F06-47D2C6A1B75B> /private/var/containers/Bundle/Application/043A25BC-E53E-4B28-B71A-C21F77C0D76D/TranslationAPI.app/TranslationAPI.debug.dylib Expected in: /System/Library/Frameworks/Translation.framework/Translation
1
1
732
Aug ’24
How to deploy Vision Transformer with ANE to Achieve Faster Uncached Load Speed
I wanted to deploy some ViT models on an iPhone. I referred to https://machinelearning.apple.com/research/vision-transformers for deployment and wrote a simple demo based on the code from https://github.com/apple/ml-vision-transformers-ane. However, I found that the uncached load time on the phone is very long. According to the blog, the input is already aligned to 64 bytes, but the speed is still very slow. Is there any way to speed it up? This is my test case: import torch import coremltools as ct import math from torch import nn class SelfAttn(torch.nn.Module): def __init__(self, window_size, num_heads, dim, dim_out): super().__init__() self.window_size = window_size self.num_heads = num_heads self.dim = dim self.dim_out = dim_out self.q_proj = nn.Conv2d( in_channels=dim, out_channels=dim_out, kernel_size=1, ) self.k_proj = nn.Conv2d( in_channels=dim, out_channels=dim_out, kernel_size=1, ) self.v_proj = nn.Conv2d( in_channels=dim, out_channels=dim_out, kernel_size=1, ) def forward(self, x): B, HW, C = x.shape image_shape = (B, C, self.window_size, self.window_size) x_2d = x.permute((0, 2, 1)).reshape(image_shape) # BCHW x_flat = torch.unsqueeze(x.permute((0, 2, 1)), 2) # BC1L q, k, v_2d = self.q_proj(x_flat), self.k_proj(x_flat), self.v_proj(x_2d) mh_q = torch.split(q, self.dim_out // self.num_heads, dim=1) # BC1L mh_v = torch.split( v_2d.reshape(B, -1, x_flat.shape[2], x_flat.shape[3]), self.dim_out // self.num_heads, dim=1 ) mh_k = torch.split( torch.permute(k, (0, 3, 2, 1)), self.dim_out // self.num_heads, dim=3 ) scale_factor = 1 / math.sqrt(mh_q[0].size(1)) attn_weights = [ torch.einsum("bchq, bkhc->bkhq", qi, ki) * scale_factor for qi, ki in zip(mh_q, mh_k) ] attn_weights = [ torch.softmax(aw, dim=1) for aw in attn_weights ] # softmax applied on channel "C" mh_x = [torch.einsum("bkhq,bchk->bchq", wi, vi) for wi, vi in zip(attn_weights, mh_v)] x = torch.cat(mh_x, dim=1) return x window_size = 8 path_batch = 1024 emb_dim = 96 emb_dim_out = 96 x = torch.rand(path_batch, window_size * window_size, emb_dim) qkv_layer = SelfAttn(window_size, 1, emb_dim, emb_dim_out) jit = torch.jit.trace(qkv_layer, (x)) mlmod_fixed_shape = ct.convert( jit, inputs=[ ct.TensorType("x", x.shape), ], convert_to="mlprogram", ) mlmodel_path = "test_ane.mlpackage" mlmod_fixed_shape.save(mlmodel_path) The uncached load took nearly 36 seconds, and it was just a single matrix multiplication.
0
1
342
Aug ’24
Bug Report: macOS 15 Beta - PyTorch gridsample Not Utilising Apple Neural Engine on MacBook Pro M2
In macOS 15 beta the gridsample function from PyTorch is not executing as expected on the Apple Neural Engine in MacBook Pro M2. Please find below a Python code snippet that demonstrates the problem: import coremltools as ct import torch.nn as nn import torch.nn.functional as F class PytorchGridSample(torch.nn.Module): def __init__(self, grids): super(PytorchGridSample, self).__init__() self.upsample1 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1) self.upsample2 = nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1) self.upsample3 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1) self.upsample4 = nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1) self.upsample5 = nn.ConvTranspose2d(32, 3, kernel_size=4, stride=2, padding=1) self.grids = grids def forward(self, x): x = self.upsample1(x) x = F.grid_sample(x, self.grids[0], padding_mode='reflection', align_corners=False) x = self.upsample2(x) x = F.grid_sample(x, self.grids[1], padding_mode='reflection', align_corners=False) x = self.upsample3(x) x = F.grid_sample(x, self.grids[2], padding_mode='reflection', align_corners=False) x = self.upsample4(x) x = F.grid_sample(x, self.grids[3], padding_mode='reflection', align_corners=False) x = self.upsample5(x) x = F.grid_sample(x, self.grids[4], padding_mode='reflection', align_corners=False) return x def convert_to_coreml(model, input_): traced_model = torch.jit.trace(model, example_inputs=input_, strict=False) coreml_model = ct.converters.convert( traced_model, inputs=[ct.TensorType(shape=input_.shape)], compute_precision=ct.precision.FLOAT16, minimum_deployment_target=ct.target.macOS14, compute_units=ct.ComputeUnit.ALL ) return coreml_model def main(pt_model, input_): coreml_model = convert_to_coreml(pt_model, input_) coreml_model.save("grid_sample.mlpackage") if __name__ == "__main__": input_tensor = torch.randn(1, 512, 4, 4) grids = [torch.randn(1, 2*i, 2*i, 2) for i in [4, 8, 16, 32, 64, 128]] pt_model = PytorchGridSample(grids) main(pt_model, input_tensor)
0
0
310
Aug ’24
Upgraded to MacOS 15, CoreML models is more slower
After I upgraded to MacOS 15 Beta 4(M1 16G), the sampling speed of apple ml-stable-diffusion was about 40% slower than MacOS 14. And when I recompile and run with xcode 16, the following error will appear: loc("EpicPhoto/Unet.mlmodelc/model.mil":2748:12): error: invalid axis: 4294967296, axis must be in range -|rank| <= axis < |rank| Assertion failed: (0 && "failed to infer output types"), function _inferJITOutputTypes, file GPUBaseOps.mm, line 339. I checked the macos 15 release notes and saw that the problem of slow running of Core ML models was fixed, but it didn't seem to be fixed. Fixed: Inference time for large Core ML models is slower than expected on a subset of M-series SOCs (e.g. M1, M1 max) on macOS. (129682801)
2
0
382
Aug ’24
Help Needed: Error Codes in VCPHumanPoseImageRequest.mm[85] and NSArrayM insertObject
Hey all 👋🏼 We're currently working on a video processing project using the Vision framework (face, body and hand pose detection), and We've encountered a couple of errors that I need help with. We are on Xcode 16 Beta 3, testing on an iPhone 14 Pro running iOS 18 beta. The error messages are as follows: [LOG_ERROR] /Library/Caches/com.apple.xbs/Sources/MediaAnalysis/VideoProcessing/VCPHumanPoseImageRequest.mm[85]: code 18,446,744,073,709,551,598 encountered an unexpected condition: *** -[__NSArrayM insertObject:atIndex:]: object cannot be nil What we've tried: Debugging: I’ve tried stepping through the code, but the errors occur before I can gather any meaningful insights. Searching Documentation: Looked through Apple’s developer documentation and forums but couldn’t find anything related to these specific error codes. Nil Check: Added checks to ensure objects are not nil before inserting them into arrays, but the error persists. Here are my questions: Has anyone encountered similar errors with the Vision framework, specifically related to VCPHumanPoseImageRequest and NSArray operations? Is there any known issue or bug in the version of the framework I might be using? Could it also be related to the beta? Are there any additional debug steps or logging mechanisms I can implement to narrow down the cause? Any suggestions on how to handle nil objects more effectively in this context? I would greatly appreciate any insights or suggestions you might have. Thank you in advance for your assistance! Thanks all!
3
0
594
Jul ’24
PyTorch to CoreML Model inaccuracy
I am currently working on a 2D pose estimator. I developed a PyTorch vision transformer based model with 17 joints in COCO format for the same and then converted it to CoreML using CoreML tools version 6.2. The model was trained on a custom dataset. However, upon running the converted model on iOS, I observed a significant drop in accuracy. You can see it in this video (https://youtu.be/EfGFrOZQGtU) that demonstrates the outputs of the PyTorch model (on the left) and the CoreML model (on the right). Could you please confirm if this drop in accuracy is expected and suggest any possible solutions to address this issue? Please note that all preprocessing and post-processing techniques remain consistent between the models. P.S. While converting I also got the following warning. : TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)): P.P.S. When we initialize the CoreML model on iOS 17.0, we get this error: Validation failure: Invalid Pool kernel width (13), must be [1-8] or 20. Validation failure: Invalid Pool kernel width (9), must be [1-8] or 20. Validation failure: Invalid Pool kernel width (13), must be [1-8] or 20. Validation failure: Invalid Pool kernel width (9), must be [1-8] or 20. Validation failure: Invalid Pool kernel width (13), must be [1-8] or 20. This neural network model does not have a parameter for requested key 'precisionRecallCurves'. Note: only updatable neural network models can provide parameter values and these values are only accessible in the context of an MLUpdateTask completion or progress handler.
2
0
1.2k
Jun ’24
Matmul with quantized weight does not run on ANE with FP16 offset: `ane: Failed to retrieved zero_point`
Hi, the following model does not run on ANE. Inspecting with deCoreML I see the error ane: Failed to retrieved zero_point. import numpy as np import coremltools as ct from coremltools.converters.mil import Builder as mb import coremltools.converters.mil as mil B, CIN, COUT = 512, 1024, 1024 * 4 @mb.program( input_specs=[ mb.TensorSpec((B, CIN), mil.input_types.types.fp16), ], opset_version=mil.builder.AvailableTarget.iOS18 ) def prog_manual_dequant( x, ): qw = np.random.randint(0, 2 ** 4, size=(COUT, CIN), dtype=np.int8).astype(mil.mil.types.np_uint4_dtype) scale = np.random.randn(COUT, 1).astype(np.float16) offset = np.random.randn(COUT, 1).astype(np.float16) # offset = np.random.randint(0, 2 ** 4, size=(COUT, 1), dtype=np.uint8).astype(mil.mil.types.np_uint4_dtype) dqw = mb.constexpr_blockwise_shift_scale(data=qw, scale=scale, offset=offset) return mb.linear(x=x, weight=dqw) cml_qmodel = ct.convert( prog_manual_dequant, compute_units=ct.ComputeUnit.CPU_AND_NE, compute_precision=ct.precision.FLOAT16, minimum_deployment_target=ct.target.iOS18, ) Whereas if I use an offset with the same dtype as the weights (uint4 in this case), it does run on ANE Tested on coremltools 8.0b1, on macOS 15.0 beta 2/Xcode 15 beta 2, and macOS 15.0 beta 3/Xcode 15 beta 3.
0
0
447
Jul ’24
Missing GPU implementation Op:StatelessRandomGetKeyCounter for the Embedding layer in tensorflow-metal
The Keras Embedding layer cannot be calculated on Metal because of the missing Op:StatelessRandomGetKeyCounter, as shown in this error message: tensorflow.python.framework.errors_impl.InvalidArgumentError: Could not satisfy device specification '/job:localhost/replica:0/task:0/device:GPU:0'. enable_soft_placement=0. Supported device types [CPU]. All available devices [/job:localhost/replica:0/task:0/device:GPU:0, /job:localhost/replica:0/task:0/device:CPU:0]. [Op:StatelessRandomGetKeyCounter] A workaround is to enable soft placement, but this obviously is slower: tf.config.set_soft_device_placement(True) Reporting it here as recommended by the TensorFlow Plugin Metal team.
0
0
478
Jul ’24