iOS 18.2 includes a new feature called Visual Intelligence. If I hold down the Camera Control on my iPhone, I can take a photo of an object and use Google to look up items similar to what I've photographed.
Is there a way to programmatically open this interface within my app? If so, can I see which result the user selects?
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Post
Replies
Boosts
Views
Activity
I am trying to create a Pipeline with 3 sub-models: a Feature Vectorizer -> a NN regressor converted from PyTorch -> a Feature Extractor (to convert the output tensor to a Double value).
The pipeline works fine when I use just a Vectorizer and an Extractor, this is the code:
vectorizer = models.feature_vectorizer.create_feature_vectorizer(
input_features=["windSpeed", "theoreticalPowerCurve", "windDirection"], # Multiple input features
output_feature_name="input"
)
preProc_spec = vectorizer[0]
ct.utils.convert_double_to_float_multiarray_type(preProc_spec)
extractor = models.array_feature_extractor.create_array_feature_extractor(
input_features=[("input",datatypes.Array(3,))], # Multiple input features
output_name="output",
extract_indices = 1
)
ct.utils.convert_double_to_float_multiarray_type(extractor)
pipeline_network = pipeline.PipelineRegressor (
input_features = ["windSpeed", "theoreticalPowerCurve", "windDirection"],
output_features=["output"]
)
pipeline_network.add_model(preProc_spec)
pipeline_network.add_model(extractor)
ct.utils.convert_double_to_float_multiarray_type(pipeline_network.spec)
ct.utils.save_spec(pipeline_network.spec,"Final.mlpackage")
This model works ok. I created a regression NN using PyTorch and converted to Core ML either
import torch
import torch.nn as nn
class TurbinePowerModel(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(3, 4)
self.activation1 = nn.ReLU()
#self.linear2 = nn.Linear(5, 4)
#self.activation2 = nn.ReLU()
self.output = nn.Linear(4, 1)
def forward(self, x):
#x = F.normalize(x, dim = 0)
x = self.linear1(x)
x = self.activation1(x)
# x = self.linear2(x)
# x = self.activation2(x)
x = self.output(x)
return x
def forward_inference(self, windSpeed,theoreticalPowerCurve,windDirection):
input_tensor = torch.tensor([windSpeed,
theoreticalPowerCurve,
windDirection], dtype=torch.float32)
return self.forward(input_tensor)
model = torch.load('TurbinePowerRegression-1layer.pt', weights_only=False)
import coremltools as ct
print(ct.__version__)
import pandas as pd
from sklearn.preprocessing import StandardScaler
df = pd.read_csv('T1_clean.csv',delimiter=';')
X = df[['WindSpeed','TheoreticalPowerCurve','WindDirection']]
y = df[['ActivePower']]
scaler = StandardScaler()
X = scaler.fit_transform(X)
y = scaler.fit_transform(y)
X_tensor = torch.tensor(X, dtype=torch.float32)
y_tensor = torch.tensor(y, dtype=torch.float32)
traced_model = torch.jit.trace(model, X_tensor[0])
mlmodel = ct.convert(
traced_model,
inputs=[ct.TensorType(name="input", shape=X_tensor[0].shape)],
classifier_config=None # Optional, for classification tasks
)
mlmodel.save("TurbineBase.mlpackage")
This model has a Multiarray(Float 32 3) as input and a Multiarray(Float32 1) as output.
When I try to include it in the middle of the pipeline (Adjusting the output and input types of the other models accordingly), the process runs ok, but I have the following error when opening the generated model on Xcode:
What's is missing on the models. How can I set or adjust this metadata properly?
Thanks!!!
Hi everyone,
I’m currently using macOS Version 15.3 Beta (24D5034f), and I’m encountering an issue with Apple Intelligence. The image generation tools seem to work fine, but everything else shows a message saying that it’s “not available at this time.”
I’ve tried restarting my Mac and double-checked my settings, but the problem persists. Is anyone else experiencing this issue on the beta version? Are there any fixes or settings I might be overlooking?
Any help or insights would be greatly appreciated!
Thanks in advance!
there was a beta version. after the update it worked just like regular Siri. this message has been there for two days now but there is no loading.
Hey I have a macbook pro M1 and I don't understand why but the download of apple intelligence since macOS 15.2 is remaining block at 100% with the same message telling me to be plug and connect to a network
I've implemented the imagePlaygroundSheet modifier in my app. It eventually all works but I've consistently noticed that the first time I present it, the sheet is totally blank. I then have to pull down to dismiss it (it doesn't even have a cancel button) and present it a second time and it loads content.
Just me? This is on 18.2 final, iPhone 16 Pro Max.
After updating to macOS15.2beta, the Yolo11 object detection model exported to coreml outputs incorrect and abnormal bounding boxes.
It also doesn't work in iOS apps built on a 15.2 mac.
The same model worked fine on macOS14.1.
When training a Yolo11 custom model in Python, exporting it to coreml, and testing it in the preview tab of mlpackage on macOS15.2 and Xcode16.0, the above result is obtained.
Howdy,
I'm following along with this sample:
https://developer.apple.com/documentation/appintents/making-onscreen-content-available-to-siri-and-apple-intelligence
I've got everything up and building. I can confirm that the userActivity modifier is associating my App Intent via EntityIdentifier but my custom Transferable representation (text) is never being called and when Siri is doing the ChatGPT handoff, it's just offering to send a screenshot which is what it does when it has no custom representation.
What could I doing wrong? Where should I be looking?
I have an issue with AI writing tools, certain applications, such as LinkedIn, function effectively, while others, like Instagram and WhatsApp, lack the writing tools option.
Hi everyone,
On the "Apple Intelligence & Siri" settings there's a section titled "Extensions" that specifically mentions ChatGPT.
This got me curious—does Apple provide an API or SDK for developers to create custom integrations or use Apple Intelligence Extensions? Or is this currently limited to the Apple/OpenAI partnership?
I appreciate any insights or links to relevant documentation.
Here's a screenshot of what I mean: https://imgur.com/a/4MuQkIJ
Alguem me pode indicar se os devolopers que estão no espaço da união europeia, possam aceder aos serviços apple intelligence ?
Obrigado
We use MLModel in our app, which uses two file formats: mlmodel and mlpackage. We find that when the model is released, models using mlmodel format have a certain probability of crashing. And these crashes account for the majority (over 85%) in the iOS 16.x system. Here is the crash stack:
Exception Type: SIGTRAP
Exception Codes: TRAP_BRKPT at 0x1b48e855c
Crashed Thread: 5
Thread 5 Crashed:
0 libdispatch.dylib 0x00000001b48e855c _dispatch_semaphore_dispose.cold.1 + 40
1 libdispatch.dylib 0x00000001b48b2b28 _dispatch_semaphore_signal_slow
2 libdispatch.dylib 0x00000001b48b0e58 _dispatch_dispose + 208
3 AppleNeuralEngine 0x00000001ef07b51c -[_ANEProgramForEvaluation .cxx_destruct] + 32
4 libobjc.A.dylib 0x00000001a67ed4a4 object_cxxDestructFromClass(objc_object*, objc_class*) + 116
5 libobjc.A.dylib 0x00000001a67f221c objc_destructInstance + 80
6 libobjc.A.dylib 0x00000001a67fb9d0 _objc_rootDealloc + 80
7 AppleNeuralEngine 0x00000001ef079e04 -[_ANEProgramForEvaluation dealloc] + 72
8 AppleNeuralEngine 0x00000001ef07ca70 -[_ANEModel .cxx_destruct] + 44
9 libobjc.A.dylib 0x00000001a67ed4a4 object_cxxDestructFromClass(objc_object*, objc_class*) + 116
10 libobjc.A.dylib 0x00000001a67f221c objc_destructInstance + 80
11 libobjc.A.dylib 0x00000001a67fb9d0 _objc_rootDealloc + 80
12 AppleNeuralEngine 0x00000001ef07bd7c -[_ANEModel dealloc] + 136
13 CoreFoundation 0x00000001ad4563cc cow_cleanup + 168
14 CoreFoundation 0x00000001ad49044c -[__NSDictionaryM dealloc] + 148
15 Espresso 0x00000001bb19c7a4 Espresso::ANERuntimeEngine::compiler::reset() + 1340
16 Espresso 0x00000001bb19cac8 Espresso::ANERuntimeEngine::compiler::~compiler() + 108
17 Espresso 0x00000001bacd69e4 std::__1::__shared_weak_count::__release_shared() + 84
18 Espresso 0x00000001ba944d00 std::__1::__hash_table<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::__unordered_map_hasher<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::hash<Espresso::platform>, std::__1::equal_to<Espresso::platform>, true>, std::__1::__unordered_map_equal<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::equal_to<Espresso::platform>, std::__1::hash<Espresso::platform>, true>, std::__1::allocator<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>>>::__deallocate_node(std::__1::__hash_node_base<std::__1::__hash_node<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, void*>*>*) + 40
19 Espresso 0x00000001ba8ea640 std::__1::__hash_table<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::__unordered_map_hasher<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::hash<Espresso::platform>, std::__1::equal_to<Espresso::platform>, true>, std::__1::__unordered_map_equal<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::equal_to<Espresso::platform>, std::__1::hash<Espresso::platform>, true>, std::__1::allocator<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>>>::~__hash_table() + 28
20 Espresso 0x00000001ba8e5750 Espresso::net::~net() + 396
21 Espresso 0x00000001bacd69e4 std::__1::__shared_weak_count::__release_shared() + 84
22 Espresso 0x00000001bad750e4 std::__1::__vector_base<std::__1::shared_ptr<Espresso::net>, std::__1::allocator<std::__1::shared_ptr<Espresso::net>>>::clear() + 52
23 Espresso 0x00000001ba902448 std::__1::__vector_base<std::__1::shared_ptr<Espresso::net>, std::__1::allocator<std::__1::shared_ptr<Espresso::net>>>::~__vector_base() + 36
24 Espresso 0x00000001ba8ed99c std::__1::unique_ptr<EspressoLight::espresso_plan::priv_t, std::__1::default_delete<EspressoLight::espresso_plan::priv_t>>::reset(EspressoLight::espresso_plan::priv_t*) + 188
25 Espresso 0x00000001ba95b7fc EspressoLight::espresso_plan::~espresso_plan() + 72
26 Espresso 0x00000001ba902078 EspressoLight::espresso_plan::~espresso_plan() + 16
27 Espresso 0x00000001ba8e690c espresso_plan_destroy + 372
28 CoreML 0x00000001c48c45cc -[MLNeuralNetworkEngine _deallocContextAndPlan] + 40
29 CoreML 0x00000001c48c43bc -[MLNeuralNetworkEngine dealloc] + 40
30 libobjc.A.dylib 0x00000001a67ed4a4 object_cxxDestructFromClass(objc_object*, objc_class*) + 116
31 libobjc.A.dylib 0x00000001a67f221c objc_destructInstance + 80
32 libobjc.A.dylib 0x00000001a67fb9d0 _objc_rootDealloc + 80
~~~~ Our code that release the MLModel object ~~~~
Moreover, we use a synchronization mechanism to ensure that the release of the MLModel and the data processing of the model (by calling [model predictionFromFeatures]) do not occur simultaneously. What could be the possible causes of the problem, and how can we prevent it from happening? Any advice would be appreciated.
I want to get depth map that when camera zoom in or zoom out or switch to telephoto.
I have got the depth map using ARkit that provide depth map that the colored RGB image from the wide-range camera and the depth ratings from the LiDAR scanner are fused together.
Now I want to switch camera to telephoto and hope to get new depth map.
FB:FB16079804
Hello,
I've made the FastAI's Cat vs Dog model into model that distinguishes lemons from limes and it all works fine in a notebook.
I am now looking to transform this model into Core ML for my iOS app using TorchScript and Apple official guidelines for coremltools.
Model converts but I cannot see the Preview Tab in. Xcode. Have anyone of you tried to convert to Core ML? I guess my input types are not matching with coremltools expectations for preview but I am stuck . Here is my code.
import torch
import coremltools as ct
from fastai.vision.all import *
import json
from torchvision import transforms
# Load your Fastai model (replace with your actual path)
learn = load_learner('lemonmodel.pkl')
# Example input image (you can use any image from your dataset)
input_image = PILImage.create('example.jpg')
# Preprocess the image (assuming you used these transforms during training)
to_tensor = transforms.ToTensor()
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
input_tensor = to_tensor(input_image)
input_tensor = normalize(input_tensor) # Apply normalization
# Add a batch dimension
input_tensor = input_tensor.unsqueeze(0)
# Ensure float32 type
input_tensor = input_tensor.float()
# Trace the model
trace = torch.jit.trace(learn.model, input_tensor)
# Define the Core ML input type (considering your model's input shape)
_input = ct.ImageType(
name="input_1",
shape=input_tensor.shape,
bias=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
scale=1./(255*0.226)
)
# Convert the model to Core ML format
mlmodel = ct.convert(
trace,
inputs=[_input],
minimum_deployment_target=ct.target.iOS14 # Optional, set deployment target
)
# Set model type as 'imageClassifier' for the Preview tab
mlmodel.type = 'imageClassifier'
# Correct structure for preview parameters** (assuming two classes: 'lemon' and 'lime')
labels_json = {
"imageClassifier": {
"labels": ["lemon", "lime"],
"input": {
"shape": list(input_tensor.shape), # Provide the actual input shape
"mean": [0.485, 0.456, 0.406], # Match normalization mean
"std": [0.229, 0.224, 0.225] # Match normalization std
},
"output": {
"shape": [1, 2] # Output shape for your model (2 classes)
}
}
}
# Setting up the metadata with correct 'preview' params
mlmodel.user_defined_metadata['com.apple.coreml.model.preview.params'] = json.dumps(labels_json)
# Save the model as .mlmodel
mlmodel.save("LemonClassifierGemini.mlmodel")
mlmodel = ct.convert(
trace,
inputs=[_input],
minimum_deployment_target=ct.target.iOS14 # Optional, set deployment target
)
# Set model type as 'imageClassifier' for the Preview tab**
mlmodel.type = 'imageClassifier'
# Correct structure for preview parameters** (assuming two classes: 'lemon' and 'lime')
labels_json = {
"imageClassifier": {
"labels": ["lemon", "lime"],
"input": {
"shape": list(input_tensor.shape), # Provide the actual input shape
"mean": [0.485, 0.456, 0.406], # Match normalization mean
"std": [0.229, 0.224, 0.225] # Match normalization std
},
"output": {
"shape": [1, 2] # Output shape for your model (2 classes)
}
}
}
# Setting up the metadata with correct 'preview' params**
mlmodel.user_defined_metadata['com.apple.coreml.model.preview.params'] = json.dumps(labels_json)
# Save the model as .mlmodel
mlmodel.save("LemonClassifierGemini.mlmodel")
My model is :
Input batch shape: torch.Size([32, 3, 192, 192])
Labels batch shape: torch.Size([32])
Validation Loss: None, Validation Metric: None
Predictions shape: torch.Size([63, 2])
Targets shape: torch.Size([63])
Code for the model :
searches = 'lemon','lime'
path = Path('lemon_or_not')
for o in searches:
dest = (path/o)
dest.mkdir(exist_ok=True, parents=True)
download_images(dest, urls=search_images(f'{o} photo'))
time.sleep(5)
resize_images(path/o, max_size=400, dest=path/o)
dls = DataBlock(
blocks=(ImageBlock, CategoryBlock),
get_items=get_image_files,
splitter=RandomSplitter(valid_pct=0.2, seed=42),
get_y=parent_label,
item_tfms=[Resize(192, method='squish')]
).dataloaders(path, bs=32)
dls.show_batch(max_n=6)
learn = vision_learner(dls, resnet18, metrics=error_rate)
learn.fine_tune(3)
is_lemon,_,probs = learn.predict(PILImage.create('lemon.jpg'))
print(f"This is a: {is_lemon}.")
print(f"Probability it's a lemon: {probs[0]:.4f}")
This is a: lemon.
Probability it's a lemon: 1.0000
learn.export('lemonmodel.pkl')
I am stuck to why it doest show the Preview Tab.
I used the multifunction models feature introduced in iOS 18 to merge three VAE Encoder models with different resolutions into a single model. However, loading this merged model on iOS causes a crash with the error EXC_BAD_ACCESS (code=1, address=0x0). In contrast, merging VAE Decoder models using the same method does not result in crashes. Additionally, merging only two VAE Decoder models with different resolutions also leads to a crash when loaded on iOS. As for the Stable Diffusion Unet model, merging two or even three models does not cause any crashes, and it successfully generates images as expected.
I use the following code to load the model:
let config = MLModelConfiguration()
config.computeUnits = .cpuAndNeuralEngine
config.functionName = "test"
try MLModel(contentsOf: url, configuration: config)
When using the imagePlaygroundSheet modifier in SwiftUI, the system presets an image playground in a fixed size. Especially on macOS, this modal is rather small and doesn't utilize the available space efficiently.
Is there a way to make the modal bigger, or allow the user to resize the dialog? I tried presentationDetents, but this would need to be applied to the content of the sheet, which is provided by the system...
I guess this question applies to other system-provided sheets like the photo picker as well.
I am using the depthAnything v2 provided by Apple on the developer website. On my iPhone 15 Pro, if I choose all or cpuAndNeuralEngine, it will stuck in loading models.
let config = MLModelConfiguration()
config.computeUnits = .cpuAndGPU//normal when not using neuralEngine.
let model = try await DepthModel.load(configuration: config)
with following error:
E5RT encountered an STL exception. msg = MILCompilerForANE error: failed to compile ANE model using ANEF. Error=无法与帮助程序通信。.
E5RT: MILCompilerForANE error: failed to compile ANE model using ANEF. Error=无法与帮助程序通信。 (11)
Hi everyone,
I'm working on an iOS app that uses VisionKit and I'm exploring the .visualLookUp feature. Specifically, I want to extract the detailed information that Visual Look Up provides after identifying an object in an image (e.g., if the object is a flower, retrieve its name; if it’s a clothing tag, get the tag's content).
I'm working on a cross-platform AI app. It is a CMake project. The inference part should be built as a library separately on Windows and MacOS. On MacOS it should be built with objective-c and CoreML.
Here's my step roughly:
Create a XCode Project for CoreML inference and build it as static library. Models are compiled to ".mlmodelc", and codes are compile to binary ".a" lib.
Create a CMake Project for the app, and use the ".a" lib built by XCode.
Run the App.
I initialize the CoreML model like this(just for demostration):
#include "det.h" // the model header generated by xcode
auto url = [[NSURL alloc] initFileURLWithPath:[NSString stringWithFormat:@"%@/%@", dir, @"det.mlmodelc"]];
auto model = [[det alloc] initWithContentsOfURL:url error:&error]; // no error
The url is valid, and the initialization doesn't report any error. However, when I tried to do inference using codes like this:
auto cvPixelBuffer = createCVPixelBuffer(960, 960); // util function
auto preds = [model predictionFromImage:cvPixelBuffer error:NULL];
The output preds will be null and I got these errors:
2024-12-10 14:52:37.678201+0800 望言OCR[50204:5615023] [e5rt] E5RT encountered unknown exception.
2024-12-10 14:52:37.678237+0800 望言OCR[50204:5615023] [coreml] E5RT: E5RT encountered an unknown exception. (11)
2024-12-10 14:52:37.870739+0800 望言OCR[50204:5615023] H11ANEDevice::H11ANEDeviceOpen kH11ANEUserClientCommand_DeviceOpen call failed result=0xe00002e2
2024-12-10 14:52:37.870758+0800 望言OCR[50204:5615023] Device Open failed - status=0xe00002e2
2024-12-10 14:52:37.870760+0800 望言OCR[50204:5615023] (Single-ANE System) Critical Error: Could not open the only H11ANE device
2024-12-10 14:52:37.870769+0800 望言OCR[50204:5615023] H11ANEDeviceOpen failed: 0x17
2024-12-10 14:52:37.870845+0800 望言OCR[50204:5615023] H11ANEDevice::H11ANEDeviceOpen kH11ANEUserClientCommand_DeviceOpen call failed result=0xe00002e2
2024-12-10 14:52:37.870848+0800 望言OCR[50204:5615023] Device Open failed - status=0xe00002e2
2024-12-10 14:52:37.870849+0800 望言OCR[50204:5615023] (Single-ANE System) Critical Error: Could not open the only H11ANE device
2024-12-10 14:52:37.870853+0800 望言OCR[50204:5615023] H11ANEDeviceOpen failed: 0x17
2024-12-10 14:52:37.870857+0800 望言OCR[50204:5615023] [common] start: ANEDeviceOpen() failed : ret=23 :
It seems that CoreML failed to find ANE device. Is there anything need to be done before we use a CoreML Model as a library in a CMake or other non-XCode project?
By the way, codes like above will work on an XCode Native App with CoreML (I tested this before) . So I guess I missed some environment initializations in my non-XCode project?
Hey Chat,
I'm researching personality analysis using LLMs, and I'm curious about whether Apple’s AI can be allowed access to your messages, Instagram DMs, and similar communications to perform a personality analysis based on your writing style. If anyone has insights on this, I would greatly appreciate your input. Thx a ton