Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics

Post

Replies

Boosts

Views

Activity

Problems creating a PipelineRegressor from a PyTorch converted model
I am trying to create a Pipeline with 3 sub-models: a Feature Vectorizer -> a NN regressor converted from PyTorch -> a Feature Extractor (to convert the output tensor to a Double value). The pipeline works fine when I use just a Vectorizer and an Extractor, this is the code: vectorizer = models.feature_vectorizer.create_feature_vectorizer( input_features=["windSpeed", "theoreticalPowerCurve", "windDirection"], # Multiple input features output_feature_name="input" ) preProc_spec = vectorizer[0] ct.utils.convert_double_to_float_multiarray_type(preProc_spec) extractor = models.array_feature_extractor.create_array_feature_extractor( input_features=[("input",datatypes.Array(3,))], # Multiple input features output_name="output", extract_indices = 1 ) ct.utils.convert_double_to_float_multiarray_type(extractor) pipeline_network = pipeline.PipelineRegressor ( input_features = ["windSpeed", "theoreticalPowerCurve", "windDirection"], output_features=["output"] ) pipeline_network.add_model(preProc_spec) pipeline_network.add_model(extractor) ct.utils.convert_double_to_float_multiarray_type(pipeline_network.spec) ct.utils.save_spec(pipeline_network.spec,"Final.mlpackage") This model works ok. I created a regression NN using PyTorch and converted to Core ML either import torch import torch.nn as nn class TurbinePowerModel(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.activation1 = nn.ReLU() #self.linear2 = nn.Linear(5, 4) #self.activation2 = nn.ReLU() self.output = nn.Linear(4, 1) def forward(self, x): #x = F.normalize(x, dim = 0) x = self.linear1(x) x = self.activation1(x) # x = self.linear2(x) # x = self.activation2(x) x = self.output(x) return x def forward_inference(self, windSpeed,theoreticalPowerCurve,windDirection): input_tensor = torch.tensor([windSpeed, theoreticalPowerCurve, windDirection], dtype=torch.float32) return self.forward(input_tensor) model = torch.load('TurbinePowerRegression-1layer.pt', weights_only=False) import coremltools as ct print(ct.__version__) import pandas as pd from sklearn.preprocessing import StandardScaler df = pd.read_csv('T1_clean.csv',delimiter=';') X = df[['WindSpeed','TheoreticalPowerCurve','WindDirection']] y = df[['ActivePower']] scaler = StandardScaler() X = scaler.fit_transform(X) y = scaler.fit_transform(y) X_tensor = torch.tensor(X, dtype=torch.float32) y_tensor = torch.tensor(y, dtype=torch.float32) traced_model = torch.jit.trace(model, X_tensor[0]) mlmodel = ct.convert( traced_model, inputs=[ct.TensorType(name="input", shape=X_tensor[0].shape)], classifier_config=None # Optional, for classification tasks ) mlmodel.save("TurbineBase.mlpackage") This model has a Multiarray(Float 32 3) as input and a Multiarray(Float32 1) as output. When I try to include it in the middle of the pipeline (Adjusting the output and input types of the other models accordingly), the process runs ok, but I have the following error when opening the generated model on Xcode: What's is missing on the models. How can I set or adjust this metadata properly? Thanks!!!
0
0
110
2d
Apple Intelligence crashed/stopped working
Hi everyone, I’m currently using macOS Version 15.3 Beta (24D5034f), and I’m encountering an issue with Apple Intelligence. The image generation tools seem to work fine, but everything else shows a message saying that it’s “not available at this time.” I’ve tried restarting my Mac and double-checked my settings, but the problem persists. Is anyone else experiencing this issue on the beta version? Are there any fixes or settings I might be overlooking? Any help or insights would be greatly appreciated! Thanks in advance!
1
1
144
3d
The yolo11 object detection model I exported to coreml stopped working in macOS15.2 beta.
After updating to macOS15.2beta, the Yolo11 object detection model exported to coreml outputs incorrect and abnormal bounding boxes. It also doesn't work in iOS apps built on a 15.2 mac. The same model worked fine on macOS14.1. When training a Yolo11 custom model in Python, exporting it to coreml, and testing it in the preview tab of mlpackage on macOS15.2 and Xcode16.0, the above result is obtained.
1
1
203
1w
Making onscreen content available to Siri not requesting my Transferable
Howdy, I'm following along with this sample: https://developer.apple.com/documentation/appintents/making-onscreen-content-available-to-siri-and-apple-intelligence I've got everything up and building. I can confirm that the userActivity modifier is associating my App Intent via EntityIdentifier but my custom Transferable representation (text) is never being called and when Siri is doing the ChatGPT handoff, it's just offering to send a screenshot which is what it does when it has no custom representation. What could I doing wrong? Where should I be looking?
3
0
209
1w
Does Apple Intelligence Extensions Have an API?
Hi everyone, On the "Apple Intelligence & Siri" settings there's a section titled "Extensions" that specifically mentions ChatGPT. This got me curious—does Apple provide an API or SDK for developers to create custom integrations or use Apple Intelligence Extensions? Or is this currently limited to the Apple/OpenAI partnership? I appreciate any insights or links to relevant documentation. Here's a screenshot of what I mean: https://imgur.com/a/4MuQkIJ
0
1
200
1w
MLModel crashes when it is released on some iOS systems
We use MLModel in our app, which uses two file formats: mlmodel and mlpackage. We find that when the model is released, models using mlmodel format have a certain probability of crashing. And these crashes account for the majority (over 85%) in the iOS 16.x system. Here is the crash stack: Exception Type: SIGTRAP Exception Codes: TRAP_BRKPT at 0x1b48e855c Crashed Thread: 5 Thread 5 Crashed: 0 libdispatch.dylib 0x00000001b48e855c _dispatch_semaphore_dispose.cold.1 + 40 1 libdispatch.dylib 0x00000001b48b2b28 _dispatch_semaphore_signal_slow 2 libdispatch.dylib 0x00000001b48b0e58 _dispatch_dispose + 208 3 AppleNeuralEngine 0x00000001ef07b51c -[_ANEProgramForEvaluation .cxx_destruct] + 32 4 libobjc.A.dylib 0x00000001a67ed4a4 object_cxxDestructFromClass(objc_object*, objc_class*) + 116 5 libobjc.A.dylib 0x00000001a67f221c objc_destructInstance + 80 6 libobjc.A.dylib 0x00000001a67fb9d0 _objc_rootDealloc + 80 7 AppleNeuralEngine 0x00000001ef079e04 -[_ANEProgramForEvaluation dealloc] + 72 8 AppleNeuralEngine 0x00000001ef07ca70 -[_ANEModel .cxx_destruct] + 44 9 libobjc.A.dylib 0x00000001a67ed4a4 object_cxxDestructFromClass(objc_object*, objc_class*) + 116 10 libobjc.A.dylib 0x00000001a67f221c objc_destructInstance + 80 11 libobjc.A.dylib 0x00000001a67fb9d0 _objc_rootDealloc + 80 12 AppleNeuralEngine 0x00000001ef07bd7c -[_ANEModel dealloc] + 136 13 CoreFoundation 0x00000001ad4563cc cow_cleanup + 168 14 CoreFoundation 0x00000001ad49044c -[__NSDictionaryM dealloc] + 148 15 Espresso 0x00000001bb19c7a4 Espresso::ANERuntimeEngine::compiler::reset() + 1340 16 Espresso 0x00000001bb19cac8 Espresso::ANERuntimeEngine::compiler::~compiler() + 108 17 Espresso 0x00000001bacd69e4 std::__1::__shared_weak_count::__release_shared() + 84 18 Espresso 0x00000001ba944d00 std::__1::__hash_table<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::__unordered_map_hasher<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::hash<Espresso::platform>, std::__1::equal_to<Espresso::platform>, true>, std::__1::__unordered_map_equal<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::equal_to<Espresso::platform>, std::__1::hash<Espresso::platform>, true>, std::__1::allocator<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>>>::__deallocate_node(std::__1::__hash_node_base<std::__1::__hash_node<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, void*>*>*) + 40 19 Espresso 0x00000001ba8ea640 std::__1::__hash_table<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::__unordered_map_hasher<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::hash<Espresso::platform>, std::__1::equal_to<Espresso::platform>, true>, std::__1::__unordered_map_equal<Espresso::platform, std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>, std::__1::equal_to<Espresso::platform>, std::__1::hash<Espresso::platform>, true>, std::__1::allocator<std::__1::__hash_value_type<Espresso::platform, std::__1::shared_ptr<Espresso::net_compiler>>>>::~__hash_table() + 28 20 Espresso 0x00000001ba8e5750 Espresso::net::~net() + 396 21 Espresso 0x00000001bacd69e4 std::__1::__shared_weak_count::__release_shared() + 84 22 Espresso 0x00000001bad750e4 std::__1::__vector_base<std::__1::shared_ptr<Espresso::net>, std::__1::allocator<std::__1::shared_ptr<Espresso::net>>>::clear() + 52 23 Espresso 0x00000001ba902448 std::__1::__vector_base<std::__1::shared_ptr<Espresso::net>, std::__1::allocator<std::__1::shared_ptr<Espresso::net>>>::~__vector_base() + 36 24 Espresso 0x00000001ba8ed99c std::__1::unique_ptr<EspressoLight::espresso_plan::priv_t, std::__1::default_delete<EspressoLight::espresso_plan::priv_t>>::reset(EspressoLight::espresso_plan::priv_t*) + 188 25 Espresso 0x00000001ba95b7fc EspressoLight::espresso_plan::~espresso_plan() + 72 26 Espresso 0x00000001ba902078 EspressoLight::espresso_plan::~espresso_plan() + 16 27 Espresso 0x00000001ba8e690c espresso_plan_destroy + 372 28 CoreML 0x00000001c48c45cc -[MLNeuralNetworkEngine _deallocContextAndPlan] + 40 29 CoreML 0x00000001c48c43bc -[MLNeuralNetworkEngine dealloc] + 40 30 libobjc.A.dylib 0x00000001a67ed4a4 object_cxxDestructFromClass(objc_object*, objc_class*) + 116 31 libobjc.A.dylib 0x00000001a67f221c objc_destructInstance + 80 32 libobjc.A.dylib 0x00000001a67fb9d0 _objc_rootDealloc + 80 ~~~~ Our code that release the MLModel object ~~~~ Moreover, we use a synchronization mechanism to ensure that the release of the MLModel and the data processing of the model (by calling [model predictionFromFeatures]) do not occur simultaneously. What could be the possible causes of the problem, and how can we prevent it from happening? Any advice would be appreciated.
1
0
147
1w
Converting FastAI Cat vs Dog Model into Core ML
FB:FB16079804 Hello, I've made the FastAI's Cat vs Dog model into model that distinguishes lemons from limes and it all works fine in a notebook. I am now looking to transform this model into Core ML for my iOS app using TorchScript and Apple official guidelines for coremltools. Model converts but I cannot see the Preview Tab in. Xcode. Have anyone of you tried to convert to Core ML? I guess my input types are not matching with coremltools expectations for preview but I am stuck . Here is my code. import torch import coremltools as ct from fastai.vision.all import * import json from torchvision import transforms # Load your Fastai model (replace with your actual path) learn = load_learner('lemonmodel.pkl') # Example input image (you can use any image from your dataset) input_image = PILImage.create('example.jpg') # Preprocess the image (assuming you used these transforms during training) to_tensor = transforms.ToTensor() normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) input_tensor = to_tensor(input_image) input_tensor = normalize(input_tensor) # Apply normalization # Add a batch dimension input_tensor = input_tensor.unsqueeze(0) # Ensure float32 type input_tensor = input_tensor.float() # Trace the model trace = torch.jit.trace(learn.model, input_tensor) # Define the Core ML input type (considering your model's input shape) _input = ct.ImageType( name="input_1", shape=input_tensor.shape, bias=[-0.485/0.229, -0.456/0.224, -0.406/0.225], scale=1./(255*0.226) ) # Convert the model to Core ML format mlmodel = ct.convert( trace, inputs=[_input], minimum_deployment_target=ct.target.iOS14 # Optional, set deployment target ) # Set model type as 'imageClassifier' for the Preview tab mlmodel.type = 'imageClassifier' # Correct structure for preview parameters** (assuming two classes: 'lemon' and 'lime') labels_json = { "imageClassifier": { "labels": ["lemon", "lime"], "input": { "shape": list(input_tensor.shape), # Provide the actual input shape "mean": [0.485, 0.456, 0.406], # Match normalization mean "std": [0.229, 0.224, 0.225] # Match normalization std }, "output": { "shape": [1, 2] # Output shape for your model (2 classes) } } } # Setting up the metadata with correct 'preview' params mlmodel.user_defined_metadata['com.apple.coreml.model.preview.params'] = json.dumps(labels_json) # Save the model as .mlmodel mlmodel.save("LemonClassifierGemini.mlmodel") mlmodel = ct.convert( trace, inputs=[_input], minimum_deployment_target=ct.target.iOS14 # Optional, set deployment target ) # Set model type as 'imageClassifier' for the Preview tab** mlmodel.type = 'imageClassifier' # Correct structure for preview parameters** (assuming two classes: 'lemon' and 'lime') labels_json = { "imageClassifier": { "labels": ["lemon", "lime"], "input": { "shape": list(input_tensor.shape), # Provide the actual input shape "mean": [0.485, 0.456, 0.406], # Match normalization mean "std": [0.229, 0.224, 0.225] # Match normalization std }, "output": { "shape": [1, 2] # Output shape for your model (2 classes) } } } # Setting up the metadata with correct 'preview' params** mlmodel.user_defined_metadata['com.apple.coreml.model.preview.params'] = json.dumps(labels_json) # Save the model as .mlmodel mlmodel.save("LemonClassifierGemini.mlmodel") My model is : Input batch shape: torch.Size([32, 3, 192, 192]) Labels batch shape: torch.Size([32]) Validation Loss: None, Validation Metric: None Predictions shape: torch.Size([63, 2]) Targets shape: torch.Size([63]) Code for the model : searches = 'lemon','lime' path = Path('lemon_or_not') for o in searches: dest = (path/o) dest.mkdir(exist_ok=True, parents=True) download_images(dest, urls=search_images(f'{o} photo')) time.sleep(5) resize_images(path/o, max_size=400, dest=path/o) dls = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=[Resize(192, method='squish')] ).dataloaders(path, bs=32) dls.show_batch(max_n=6) learn = vision_learner(dls, resnet18, metrics=error_rate) learn.fine_tune(3) is_lemon,_,probs = learn.predict(PILImage.create('lemon.jpg')) print(f"This is a: {is_lemon}.") print(f"Probability it's a lemon: {probs[0]:.4f}") This is a: lemon. Probability it's a lemon: 1.0000 learn.export('lemonmodel.pkl') I am stuck to why it doest show the Preview Tab.
3
0
207
1w
Loading multifunction models on iOS causes a crash
I used the multifunction models feature introduced in iOS 18 to merge three VAE Encoder models with different resolutions into a single model. However, loading this merged model on iOS causes a crash with the error EXC_BAD_ACCESS (code=1, address=0x0). In contrast, merging VAE Decoder models using the same method does not result in crashes. Additionally, merging only two VAE Decoder models with different resolutions also leads to a crash when loaded on iOS. As for the Stable Diffusion Unet model, merging two or even three models does not cause any crashes, and it successfully generates images as expected. I use the following code to load the model: let config = MLModelConfiguration() config.computeUnits = .cpuAndNeuralEngine config.functionName = "test" try MLModel(contentsOf: url, configuration: config)
3
0
148
1w
Resize Image Playground sheet
When using the imagePlaygroundSheet modifier in SwiftUI, the system presets an image playground in a fixed size. Especially on macOS, this modal is rather small and doesn't utilize the available space efficiently. Is there a way to make the modal bigger, or allow the user to resize the dialog? I tried presentationDetents, but this would need to be applied to the content of the sheet, which is provided by the system... I guess this question applies to other system-provided sheets like the photo picker as well.
1
0
143
1w
CoreML takes forever to load when using neural engine
I am using the depthAnything v2 provided by Apple on the developer website. On my iPhone 15 Pro, if I choose all or cpuAndNeuralEngine, it will stuck in loading models. let config = MLModelConfiguration() config.computeUnits = .cpuAndGPU//normal when not using neuralEngine. let model = try await DepthModel.load(configuration: config) with following error: E5RT encountered an STL exception. msg = MILCompilerForANE error: failed to compile ANE model using ANEF. Error=无法与帮助程序通信。. E5RT: MILCompilerForANE error: failed to compile ANE model using ANEF. Error=无法与帮助程序通信。 (11)
1
0
118
1w
How to use CoreML outside of XCode as a library ?
I'm working on a cross-platform AI app. It is a CMake project. The inference part should be built as a library separately on Windows and MacOS. On MacOS it should be built with objective-c and CoreML. Here's my step roughly: Create a XCode Project for CoreML inference and build it as static library. Models are compiled to ".mlmodelc", and codes are compile to binary ".a" lib. Create a CMake Project for the app, and use the ".a" lib built by XCode. Run the App. I initialize the CoreML model like this(just for demostration): #include "det.h" // the model header generated by xcode auto url = [[NSURL alloc] initFileURLWithPath:[NSString stringWithFormat:@"%@/%@", dir, @"det.mlmodelc"]]; auto model = [[det alloc] initWithContentsOfURL:url error:&error]; // no error The url is valid, and the initialization doesn't report any error. However, when I tried to do inference using codes like this: auto cvPixelBuffer = createCVPixelBuffer(960, 960); // util function auto preds = [model predictionFromImage:cvPixelBuffer error:NULL]; The output preds will be null and I got these errors: 2024-12-10 14:52:37.678201+0800 望言OCR[50204:5615023] [e5rt] E5RT encountered unknown exception. 2024-12-10 14:52:37.678237+0800 望言OCR[50204:5615023] [coreml] E5RT: E5RT encountered an unknown exception. (11) 2024-12-10 14:52:37.870739+0800 望言OCR[50204:5615023] H11ANEDevice::H11ANEDeviceOpen kH11ANEUserClientCommand_DeviceOpen call failed result=0xe00002e2 2024-12-10 14:52:37.870758+0800 望言OCR[50204:5615023] Device Open failed - status=0xe00002e2 2024-12-10 14:52:37.870760+0800 望言OCR[50204:5615023] (Single-ANE System) Critical Error: Could not open the only H11ANE device 2024-12-10 14:52:37.870769+0800 望言OCR[50204:5615023] H11ANEDeviceOpen failed: 0x17 2024-12-10 14:52:37.870845+0800 望言OCR[50204:5615023] H11ANEDevice::H11ANEDeviceOpen kH11ANEUserClientCommand_DeviceOpen call failed result=0xe00002e2 2024-12-10 14:52:37.870848+0800 望言OCR[50204:5615023] Device Open failed - status=0xe00002e2 2024-12-10 14:52:37.870849+0800 望言OCR[50204:5615023] (Single-ANE System) Critical Error: Could not open the only H11ANE device 2024-12-10 14:52:37.870853+0800 望言OCR[50204:5615023] H11ANEDeviceOpen failed: 0x17 2024-12-10 14:52:37.870857+0800 望言OCR[50204:5615023] [common] start: ANEDeviceOpen() failed : ret=23 : It seems that CoreML failed to find ANE device. Is there anything need to be done before we use a CoreML Model as a library in a CMake or other non-XCode project? By the way, codes like above will work on an XCode Native App with CoreML (I tested this before) . So I guess I missed some environment initializations in my non-XCode project?
1
0
108
1w