Create ML

RSS for tag

Create machine learning models for use in your app using Create ML.

Create ML Documentation

Post

Replies

Boosts

Views

Activity

CreatML stop training
It appears that there is a size limit when training the Tabular Classification model in CreatML. When the training data is small, the training process completes smoothly after a specified period. However, as the data volume increases, the following issues occur: initially, the training process indicates that it is in progress, but after approximately 24 hours, it is automatically terminated after an hour. I am certain that this is not a manual termination by myself or others, but rather an automatic termination by the machine. This issue persists despite numerous attempts, and the only message displayed is “Training Canceled.” I would appreciate it if someone could explain the reason behind this behavior and provide a solution. Thank you for your assistance.
1
0
157
1w
How to confirm whether CreatML is training
I am currently training a Tabular Classification model in CreatML. The dataset comprises 30 features, including 1,000,000 training data points and 1,000,000 verification data points. Could you please estimate the approximate training time for an M4Max MacBook Pro? During the training process, CreatML has been displaying the “Processing” status, but there is no progress bar. I would like to ascertain whether the training is still ongoing, as I have often suspected that it has ceased.
1
0
236
2w
Help Needed: SwiftUI View with Camera Integration and Core ML Object Recognition
Hi everyone, I'm working on a SwiftUI app and need help building a view that integrates the device's camera and uses a pre-trained Core ML model for real-time object recognition. Here's what I want to achieve: Open the device's camera from a SwiftUI view. Capture frames from the camera feed and analyze them using a Create ML-trained Core ML model. If a specific figure/object is recognized, automatically close the camera view and navigate to another screen in my app. I'm looking for guidance on: Setting up live camera capture in SwiftUI. Using Core ML and Vision frameworks for real-time object recognition in this context. Managing navigation between views when the recognition condition is met. Any advice, code snippets, or examples would be greatly appreciated! Thanks in advance!
1
0
265
2w
Create ML how to handle polygon annotations?
I have images, and I annotated with polygon, actually simple trapezoid, so 4 points. I have been trying and trying but can't get Create ML to work. I am trying Object Detection. I am not a real programmer so really would greatly appreciate some guidance to help to get this model created. I think I made a Detectron2 model, and tried to get that converted into a mlmodel I need for xcode but had troubles there also. thank you. { "annotation": "IMG_1803.JPG", "annotations": [ { "label": "court", "coordinates": { "x": [ 187, 3710, 2780, 929 ], "y": [ 1689, 1770, 478, 508 ] } } ] },
2
0
329
2w
Create ML Trouble Loading CSV to Train Word Tagger With Commas in Training Data
I'm using Numbers to build a spreadsheet that I'm exporting as a CSV. I then import this file into Create ML to train a word tagger model. Everything has been working fine for all the models I've trained so far, but now I'm coming across a use case that has been breaking the import process: commas within the training data. This is a case that none of Apple's examples show. My project takes Navajo text that has been tokenized by syllables and labels the parts-of-speech. Case that works... Raw text: Naaltsoos yídéeshtah. Tokens column: Naal,tsoos, ,yí,déesh,tah,. Labels column: NObj,NObj,Space,Verb,Verb,VStem,Punct Case that breaks... Raw text: óola, béésh łigaii, tłʼoh naadą́ą́ʼ, wáin, akʼah, dóó á,shįįh Tokens column with tokenized text (commas quoted): óo,la,",", ,béésh, ,łi,gaii,",", ,tłʼoh, ,naa,dą́ą́ʼ,",", ,wáin,",", ,a,kʼah,",", ,dóó, ,á,shįįh (Create ML reports mismatched columns) Tokens column with tokenized text (commas escaped): óo,la,\,, ,béésh, ,łi,gaii,\,, ,tłʼoh, ,naa,dą́ą́ʼ,\,, ,wáin,\,, ,a,kʼah,\,, ,dóó, ,á,shįįh (Create ML reports mismatched columns) Tokens column with tokenized text (commas escape-quoted): óo,la,\",\", ,béésh, ,łi,gaii,\",\", ,tłʼoh, ,naa,dą́ą́ʼ,\",\", ,wáin,\",\", ,a,kʼah,\",\", ,dóó, ,á,shįįh (record not detected by Create ML) Tokens column with tokenized text (commas escape-quoted): óo,la,"","", ,béésh, ,łi,gaii,"","", ,tłʼoh, ,naa,dą́ą́ʼ,"","", ,wáin,"","", ,a,kʼah,"","", ,dóó, ,á,shįįh (Create ML reports mismatched columns) Labels column: NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Punct,Space,NSub,NSub,Punct,Space,Conj,Space,NSub,NSub Sample From Spreadsheet Solution Needed It's simple enough to escape commas within CSV files, but the format needed by Create ML essentially combines entire CSV records into single columns, so I'm ending up needing a CSV record that contains a mixture of commas to use for parsing and ones to use as character literals. That's where this gets complicated. For this particular use case (which seems like it would frequently arise when training a word tagger model), how should I properly escape a comma literal?
5
0
347
4w
Source Files from the Session number 424 WWDC2019
In the 2019 WWDC session Training Object Detection Models in Create ML a JSON file named: annotations_832_newdice_copy.json was show alongside with the images folder named: Dice Training Images Two Sets. Are these resources made available for devs ? I am looking to understand whether the 6000 annotations were needed to be done manually ? Meaning, they have annotated around 1000 images making 6 labels on each manually to achieve this source ? Video shows around 1000 images. Can someone please clarify.
2
0
285
Dec ’24
unable to run tensorflow on my machine
Hello! I've been trying to run tensorflow on my MBA M3. I previously had an Intel Mac and was able to run tensorflow without any problem. I've been working on a personal project in a directory I made on my previous Mac, that I was running through Jupyter notebook. Now every time I try to run the code, the kernel will die and I'm unsure what to do. I tried following tutorials, but every tutorial I've seen has made me create a new environment to access Jupyter Notebook, but not letting me access notebooks and files that have already been created. I tried to run this following command in terminal and received the subsequent error back. python -m pip install tensorflow-metal ERROR: Could not find a version that satisfies the requirement tensorflow-metal (from versions: none) ERROR: No matching distribution found for tensorflow-metal I've installed miniforge, Xcode, and anaconda onto my computer already and wanted some assistance.
1
0
440
Nov ’24
Issue with CreateML annotations.json file
Hi, I am trying to create a multi label image classifier model using CreateML (the one included in Xcode 16.1). However, my annoations.json file won't get accepted by the app. I get the following error: annotations.json file contains field "Index 0" that is not of type String Here is a JSON example which results in said error: [ { "image": "image1.jpg", "annotations": [ { "label": "car-license-plate", "coordinates": { "x": 160, "y": 108, "width": 190, "height": 200 } } ] }, { "image": "image2.jpg", "annotations": [ { "label": "car-license-plate", "coordinates": { "x": 250, "y": 150, "width": 100, "height": 98 } } ] } ]
1
0
360
Nov ’24
How to Fine-Tune the SNSoundClassifier for Custom Sound Classification in iOS?
Hi Apple Developer Community, I’m exploring ways to fine-tune the SNSoundClassifier to allow users of my iOS app to personalize the model by adding custom sounds or adjusting predictions. While Apple’s WWDC session on sound classification explains how to train from scratch, I’m specifically interested in using SNSoundClassifier as the base model and building/fine-tuning on top of it. Here are a few questions I have: 1. Fine-Tuning on SNSoundClassifier: Is there a way to fine-tune this model programmatically through APIs? The manual approach using macOS, as shown in this documentation is clear, but how can it be done dynamically - within the app for users or in a cloud backend (AWS/iCloud)? Are there APIs or classes that support such on-device/cloud-based fine-tuning or incremental learning? If not directly, can the classifier’s embeddings be used to train a lightweight custom layer? Training is likely computationally intensive and drains too much on battery, doing it on cloud can be right way but need the right apis to get this done. A sample code will do good. 2. Recommended Approach for In-App Model Customization: If SNSoundClassifier doesn’t support fine-tuning, would transfer learning on models like MobileNetV2, YAMNet, OpenL3, or FastViT be more suitable? Given these models (SNSoundClassifier, MobileNetV2, YAMNet, OpenL3, FastViT), which one would be best for accuracy and performance/efficiency on iOS? I aim to maintain real-time performance without sacrificing battery life. Also it is important to see architecture retention and accuracy after conversion to CoreML model. 3. Cost-Effective Backend Setup for Training: Mac EC2 instances on AWS have a 24-hour minimum billing, which can become expensive for limited user requests. Are there better alternatives for deploying and training models on user request when s/he uploads files (training data)? 4. TensorFlow vs PyTorch: Between TensorFlow and PyTorch, which framework would you recommend for iOS Core ML integration? TensorFlow Lite offers mobile-optimized models, but I’m also curious about PyTorch’s performance when converted to Core ML. 5. Metrics: Metrics I have in mind while picking the model are these: Publisher, Accuracy, Fine-Tuning capability, Real-Time/Live use, Suitability of iPhone 16, Architectural retention after coreML conversion, Reasons for unsuitability, Recommended use case. Any insights or recommended approaches would be greatly appreciated. Thanks in advance!
6
1
708
Oct ’24
CreateML
I'm trying to use the Spatial model to perform Object Tracking on a .usdz file that I create. After loading the file, which I can view correctly in the console, I start the training. Initially, I notice that the disk usage on my PC increases. After several GB, the usage stops, but the training progress remains for hours at 0.00% with the message "About 8hr." How can I understand what the issue is? Has anyone else experienced the same problem? Thanks Diego
1
1
337
Oct ’24
Create ML not recognizing Acceleration and Rotation Features
Hi, I'm training a model that should detect a forehand and a backend stroke. The data looks like this: activity,timestamp,Acceleration_X,Acceleration_Y,Acceleration_Z,Rotation_X,Rotation_Y,Rotation_Z forehand,0.0,0.08,-0.08,0.03,0.18,0.26,0.32 I can load it in Create ML but it's showing the acceleration and rotation x,y,z as seperate Doubles and not as one feature. What do I have to change to make this work? Thank you
0
0
314
Oct ’24
CreateML Object Detection Unable to load model from file for reading
Hi, I'm working on training a createML object detector model; I've run into an issue that has me stumped - when I reach somewhere between 100,000 and 150,000 iterations my model will stop training and error out. More Details: CreateML gives me the error prompt that says it is unable to train the model please delete the model source and start from the beginning or duplicate the model and start from the beginning (slightly paraphrased) I see the following error in the createML console (my user name and UUIDs have been redacted) Unable to load model from file:///Users/<my user name>/Library/Caches/com.apple.dt.createml/projects/<UUID HERE>/sessions/checkpoint.sessions/<UUID Here>//training-000132500.checkpoint: Cannot open file:///Users/<my user name>/Library/Caches/com.apple.dt.createml/projects/<UUID Here>/sessions/checkpoint.sessions/<uuid here> //training-000132500.checkpoint/dir_archive.ini for read. Cannot open /Users/<my username>/Library/Caches/com.apple.dt.createml/projects/<UUID>/sessions/checkpoint.sessions/<UUID>//training-000132500.checkpoint/dir_archive.ini for reading I've gone into my Caches in my Library directory and I see each piece of the file path in finder UNTIL the //training-00132500 piece of the path, so I can at least confirm that createML appears to be unable to create or open the file it needs for this training session. Technology Used: Xcode 16 Apple M1 Pro MacOS 14.6.1 (23G93) I've also verified that Xcode and terminal have full disk permissions in my system preferences - I didn't see an option to add CreateML to this list. I've also ensured that my createML project and its data sources are not in iCloud and are indeed local on my desktop. Lastly, I made more space on my machine, so I should have a little over 1 TB of space. Has anybody experienced this before? Any advice? I am majorly blocked on this issue, so I hope somebody else can help shed some light on this issue! Thanks!
0
0
378
Oct ’24
CreateML json format
I'm trying to generate a json for my training data, tried manually first and then tried using roboflow and I still get the same error: _annotations.createml.json file contains field "Index 0" that is not of type String. the json format provided by roboflow was [{"image":"menu1_jpg.rf.44dfacc93487d5049ed82952b44c81f7.jpg","annotations":[{"label":"100","coordinates":{"x":497,"y":431.5,"width":32,"height":10}}]}] any help would be greatly appreciated
2
0
808
Oct ’24
Training data "isn't in the correct format"
Hi folks, I'm trying to import data to train a model and getting the above error. I'm using the latest Xcode, have double checked the formatting in the annotations file, and used jpgrepair to remove any corruption from the data files. Next step is to try a different dataset, but is this a particular known error? (Or am I doing something obviously wrong?) 2019 Intel Mac, Xcode 15.4, macOS Sonoma 14.1.1 Thanks
1
0
356
Oct ’24
Error in TensorFlow in MacBook Air M1 (macOS Monterey)
getting this error again and again even if I tried reinstalling. Traceback (most recent call last): File "", line 1, in File "/Users/aman/LLM/env/lib/python3.8/site-packages/tensorflow/init.py", line 439, in _ll.load_library(_plugin_dir) File "/Users/aman/LLM/env/lib/python3.8/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/aman/LLM/env/lib/python3.8/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: OBJC_CLASS$_MPSGraphRandomOpDescriptor Referenced from: /Users/aman/LLM/env/lib/python3.8/site-packages/tensorflow-plugins/libmetal_plugin.dylib Expected in: /System/Library/Frameworks/MetalPerformanceShadersGraph.framework/Versions/A/MetalPerformanceShadersGraph
1
0
712
Aug ’24
CreateML - problems with asyncronous training
I can successfully train an ActionClassifier using CreateML. However, I get crashes when I attempt to do the same asynchronously. The model parameters and training data sources are the same in both cases: let modelParameters = MLActionClassifier.ModelParameters(validation: validationDataSet,batchSize: 5, maximumIterations: 10, predictionWindowSize: 120, targetFrameRate: 30) let trainingDataSource = MLActionClassifier.DataSource.directoryWithVideosAndAnnotation(at: myStudyParticipantURLFinal, annotationFile: documentURLFinal, videoColumn: "file", labelColumn: "category", startTimeColumn: "startTime", endTimeColumn: "endTime") the only thing I add to attempt asyncrounous training is sessionParameters: let sessionDirectory = URL(fileURLWithPath: "(NSHomeDirectory())/test") // Session parameters can be provided to `train` method. let sessionParameters = MLTrainingSessionParameters( sessionDirectory: sessionDirectory, reportInterval: 10, checkpointInterval: 100, iterations: 10 ) To the final method: let trainJob = try MLActionClassifier.train(trainingData: trainingDataSource, parameters: modelParameters, sessionParameters: sessionParameters) The job crashes saying it cannot find plist files. I notice that only one plist file is written: meta.plist It seems there should also be a parameters.plist written, but it is not there.
1
0
531
Aug ’24