Ok, a bit of work to get the older and more stable versions up and running. First and foremost, you'll need homebrew Then you'll need to use the version of python supported for the targeted release. The table for how to match up archival versions of tensorflow-macos and tensorflow-metal is near the bottom of this page.
You can then use brew to install the legacy python
brew install python@3.9
And then use that to create a virtual environment. Code follows for my install, though double check the location of your homebrew.
/opt/homebrew/opt/python@3.9/bin/python3.9 -m venv ~/tensorflow
source ~/tensorflow/bin/activate
With the virtual environment created, you then need to get the urls for the old pip installs. Apple prohibits the linking of external urls on this forum, but you can look up tensorflow-macos and tensoflow-metal at pypi dot org and find their release history on the left side column. Then right click/command click the release. pip install <url>
is an acceptable way to install packages.
Take careful note of the c38 or c39 in the filename - this tells you whether you need python 3.8 or 3.9 for a particular release.
With that, you just need to install using the urls. So in my example, I want to use tensorflow-macos 2.8 and tensorflow-metal 0.4.0, which did not have the deadlock issue (at least not that I recall, will add another comment with a stable configuration if I need to find it).
pip install https://files.pythonhosted.org/packages/4d/74/47440202d9a26c442b19fb8a15ec36d443f25e5ef9cf7bfdeee444981513/tensorflow_macos-2.8.0-cp39-cp39-macosx_11_0_arm64.whl
pip install https://files.pythonhosted.org/packages/d5/37/c48486778e4756b564ef844b145b16f3e0627a53b23500870d260c3a49f3/tensorflow_metal-0.4.0-cp39-cp39-macosx_11_0_arm64.whl
With that, I am off to the races. I am using tensorflow-macos to build a chatbot ai. The older configuration of tensorflow-macos and tensoflow-metal have the same training time on my configuration - about an hour per epoch. Which is not bad at all for a model with 82 million parameters and a dataset of hundreds of thousands of scientific papers (this is with M1Ultra and batch sizes of 64). Tensorflow on Mac is very powerful, but unfortunately you can't rely on latest releases or the provided installation instructions to get anything functional.