Post

Replies

Boosts

Views

Activity

Reply to CoreML Conversion Display Issues
Yes, this is what I am seeing in Xcode. xcrun coremlcompiler metadata path/to/model.mlpackage says the following: [ { "metadataOutputVersion" : "3.0", "storagePrecision" : "Float16", "outputSchema" : [ { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float32", "formattedType" : "MultiArray (Float32 1 × 256 × 230400)", "shortDescription" : "", "shape" : "[1, 256, 230400]", "name" : "var_462", "type" : "MultiArray" } ], "modelParameters" : [ ], "specificationVersion" : 6, "mlProgramOperationTypeHistogram" : { "Cast" : 2, "Conv" : 18, "Relu" : 18, "BatchNorm" : 18, "Reshape" : 1, "UpsampleNearestNeighbor" : 3, "MaxPool" : 3 }, "computePrecision" : "Mixed (Float16, Float32, Int32)", "isUpdatable" : "0", "availability" : { "macOS" : "12.0", "tvOS" : "15.0", "visionOS" : "1.0", "watchOS" : "8.0", "iOS" : "15.0", "macCatalyst" : "15.0" }, "modelType" : { "name" : "MLModelType_mlProgram" }, "userDefinedMetadata" : { "com.github.apple.coremltools.source_dialect" : "TorchScript", "com.github.apple.coremltools.source" : "torch==2.5.1", "com.github.apple.coremltools.version" : "8.1" }, "inputSchema" : [ { "hasShapeFlexibility" : "0", "isOptional" : "0", "dataType" : "Float32", "formattedType" : "MultiArray (Float32 1 × 9 × 360 × 640)", "shortDescription" : "", "shape" : "[1, 9, 360, 640]", "name" : "input_frames", "type" : "MultiArray" } ], "generatedClassName" : "BallTracker", "method" : "predict" } ]
4h
Reply to CoreML Conversion Display Issues
Additionally, in case needed as well, here is my conversion script: import torch import coremltools as ct import numpy as np import logging from ball_tracker_model import BallTrackerNet def convert_to_coreml(model_path): logging.basicConfig(level=logging.DEBUG) model = BallTrackerNet() model.load_state_dict(torch.load(model_path, map_location='cpu')) model.eval() example_input = torch.rand(1, 9, 360, 640) # Trace the model to verify shapes traced_model = torch.jit.trace(model, example_input) model_coreml = ct.convert( traced_model, inputs=[ ct.TensorType( name="input_frames", shape=(1, 9, 360, 640), dtype=np.float32, ) ], convert_to="mlprogram", minimum_deployment_target=ct.target.iOS15, ) model_coreml.save("BallTracker.mlpackage") return model_coreml # Run conversion try: model = convert_to_coreml("balltrackerbest.pt") print("Conversion successful!") except Exception as e: print(f"Conversion error: {str(e)}") Thanks again!
12h