Post

Replies

Boosts

Views

Activity

Problems creating a PipelineRegressor from a PyTorch converted model
I am trying to create a Pipeline with 3 sub-models: a Feature Vectorizer -> a NN regressor converted from PyTorch -> a Feature Extractor (to convert the output tensor to a Double value). The pipeline works fine when I use just a Vectorizer and an Extractor, this is the code: vectorizer = models.feature_vectorizer.create_feature_vectorizer( input_features=["windSpeed", "theoreticalPowerCurve", "windDirection"], # Multiple input features output_feature_name="input" ) preProc_spec = vectorizer[0] ct.utils.convert_double_to_float_multiarray_type(preProc_spec) extractor = models.array_feature_extractor.create_array_feature_extractor( input_features=[("input",datatypes.Array(3,))], # Multiple input features output_name="output", extract_indices = 1 ) ct.utils.convert_double_to_float_multiarray_type(extractor) pipeline_network = pipeline.PipelineRegressor ( input_features = ["windSpeed", "theoreticalPowerCurve", "windDirection"], output_features=["output"] ) pipeline_network.add_model(preProc_spec) pipeline_network.add_model(extractor) ct.utils.convert_double_to_float_multiarray_type(pipeline_network.spec) ct.utils.save_spec(pipeline_network.spec,"Final.mlpackage") This model works ok. I created a regression NN using PyTorch and converted to Core ML either import torch import torch.nn as nn class TurbinePowerModel(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.activation1 = nn.ReLU() #self.linear2 = nn.Linear(5, 4) #self.activation2 = nn.ReLU() self.output = nn.Linear(4, 1) def forward(self, x): #x = F.normalize(x, dim = 0) x = self.linear1(x) x = self.activation1(x) # x = self.linear2(x) # x = self.activation2(x) x = self.output(x) return x def forward_inference(self, windSpeed,theoreticalPowerCurve,windDirection): input_tensor = torch.tensor([windSpeed, theoreticalPowerCurve, windDirection], dtype=torch.float32) return self.forward(input_tensor) model = torch.load('TurbinePowerRegression-1layer.pt', weights_only=False) import coremltools as ct print(ct.__version__) import pandas as pd from sklearn.preprocessing import StandardScaler df = pd.read_csv('T1_clean.csv',delimiter=';') X = df[['WindSpeed','TheoreticalPowerCurve','WindDirection']] y = df[['ActivePower']] scaler = StandardScaler() X = scaler.fit_transform(X) y = scaler.fit_transform(y) X_tensor = torch.tensor(X, dtype=torch.float32) y_tensor = torch.tensor(y, dtype=torch.float32) traced_model = torch.jit.trace(model, X_tensor[0]) mlmodel = ct.convert( traced_model, inputs=[ct.TensorType(name="input", shape=X_tensor[0].shape)], classifier_config=None # Optional, for classification tasks ) mlmodel.save("TurbineBase.mlpackage") This model has a Multiarray(Float 32 3) as input and a Multiarray(Float32 1) as output. When I try to include it in the middle of the pipeline (Adjusting the output and input types of the other models accordingly), the process runs ok, but I have the following error when opening the generated model on Xcode: What's is missing on the models. How can I set or adjust this metadata properly? Thanks!!!
0
0
123
2d