Tensorflow-metal training with l2 regularizer much slower than without regularizer

Hi,

When I try to train resnet-50 with tensorflow-metal I found the l2 regularizer makes each epoch take almost 4x as long (~220ms instead of 60ms). I'm on a M1 Max 16" MBP. It seems like regularization shouldn't add that much time, is there anything I can do to make it faster?

Here's some sample code that reproduces the issue:

import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, ZeroPadding2D,\
     Flatten, BatchNormalization, AveragePooling2D, Dense, Activation, Add 
from tensorflow.keras.regularizers import l2
from tensorflow.keras.models import Model
from tensorflow.keras import activations
import random
import numpy as np

random.seed(1234)
np.random.seed(1234)
tf.random.set_seed(1234)

batch_size = 64
(train_im, train_lab), (test_im, test_lab) = tf.keras.datasets.cifar10.load_data()
train_im, test_im = train_im/255.0 , test_im/255.0
train_lab_categorical = tf.keras.utils.to_categorical(
    train_lab, num_classes=10, dtype='uint8')

train_DataGen = tf.keras.preprocessing.image.ImageDataGenerator()
train_set_data = train_DataGen.flow(train_im, train_lab, batch_size=batch_size, shuffle=False)

# Change this to l2 for it to train much slower
regularizer = None # l2(0.001)

def res_identity(x, filters): 
  x_skip = x
  f1, f2 = filters

  x = Conv2D(f1, kernel_size=(1, 1), strides=(1, 1), padding='valid', use_bias=False, kernel_regularizer=regularizer)(x)
  x = BatchNormalization()(x)
  x = Activation(activations.relu)(x)

  x = Conv2D(f1, kernel_size=(3, 3), strides=(1, 1), padding='same', use_bias=False, kernel_regularizer=regularizer)(x)
  x = BatchNormalization()(x)
  x = Activation(activations.relu)(x)

  x = Conv2D(f2, kernel_size=(1, 1), strides=(1, 1), padding='valid', use_bias=False, kernel_regularizer=regularizer)(x)
  x = BatchNormalization()(x)

  x = Add()([x, x_skip])
  x = Activation(activations.relu)(x)

  return x

def res_conv(x, s, filters):
  x_skip = x
  f1, f2 = filters

  x = Conv2D(f1, kernel_size=(1, 1), strides=(s, s), padding='valid', use_bias=False, kernel_regularizer=regularizer)(x)
  x = BatchNormalization()(x)
  x = Activation(activations.relu)(x)

  x = Conv2D(f1, kernel_size=(3, 3), strides=(1, 1), padding='same', use_bias=False, kernel_regularizer=regularizer)(x)
  x = BatchNormalization()(x)
  x = Activation(activations.relu)(x)

  x = Conv2D(f2, kernel_size=(1, 1), strides=(1, 1), padding='valid', use_bias=False, kernel_regularizer=regularizer)(x)
  x = BatchNormalization()(x)

  x_skip = Conv2D(f2, kernel_size=(1, 1), strides=(s, s), padding='valid', use_bias=False, kernel_regularizer=regularizer)(x_skip)
  x_skip = BatchNormalization()(x_skip)

  x = Add()([x, x_skip])
  x = Activation(activations.relu)(x)

  return x

input = Input(shape=(train_im.shape[1], train_im.shape[2], train_im.shape[3]), batch_size=batch_size)
x = ZeroPadding2D(padding=(3, 3))(input)
x = Conv2D(64, kernel_size=(7, 7), strides=(2, 2), use_bias=False)(x)
x = BatchNormalization()(x)
x = Activation(activations.relu)(x)
x = MaxPooling2D((3, 3), strides=(2, 2))(x)

x = res_conv(x, s=1, filters=(64, 256))
x = res_identity(x, filters=(64, 256))
x = res_identity(x, filters=(64, 256))

x = res_conv(x, s=2, filters=(128, 512))
x = res_identity(x, filters=(128, 512))
x = res_identity(x, filters=(128, 512))
x = res_identity(x, filters=(128, 512))

x = res_conv(x, s=2, filters=(256, 1024))
x = res_identity(x, filters=(256, 1024))
x = res_identity(x, filters=(256, 1024))
x = res_identity(x, filters=(256, 1024))
x = res_identity(x, filters=(256, 1024))
x = res_identity(x, filters=(256, 1024))

x = res_conv(x, s=2, filters=(512, 2048))
x = res_identity(x, filters=(512, 2048))
x = res_identity(x, filters=(512, 2048))

x = AveragePooling2D((2, 2), padding='same')(x)
x = Flatten()(x)
x = Dense(10, activation='softmax', kernel_initializer='he_normal')(x)

model = Model(inputs=input, outputs=x, name='Resnet50')

opt = tf.keras.optimizers.legacy.SGD(learning_rate = 0.01)
model.compile(loss=tf.keras.losses.CategoricalCrossentropy(reduction=tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE), optimizer=opt)
model.fit(x=train_im, y=train_lab_categorical, batch_size=batch_size, epochs=150, steps_per_epoch=train_im.shape[0]/batch_size)
Tensorflow-metal training with l2 regularizer much slower than without regularizer
 
 
Q