Machine Learning

RSS for tag

Create intelligent features and enable new experiences for your apps by leveraging powerful on-device machine learning.

Posts under Machine Learning tag

50 Posts
Sort by:

Post

Replies

Boosts

Views

Activity

Loading CoreML model increases app size?
Hi, i have been noticing some strange issues with using CoreML models in my app. I am using the Whisper.cpp implementation which has a coreML option. This speeds up the transcribing vs Metal. However every time i use it, the app size inside iphone settings -> General -> Storage increases - specifically the "documents and data" part, the bundle size stays consistent. The Size of the app seems to increase by the same size of the coreml model, and after a few reloads it can increase to over 3-4gb! I thought that maybe the coreml model (which is in the bundle) is being saved to file - but i can't see where, i have tried to use instruments and xcode plus lots of printing out of cache and temp directory etc, deleting the caches etc.. but no effect. I have downloaded the container of the iphone from xcode and inspected it, there are some files stored inthe cache but only a few kbs, and even though the value in the settings-> storage shows a few gb, the container is only a few mb. Please can someone help or give me some guidance on what to do to figure out why the documents and data is increasing? where could this folder be pointing to that is not in the xcode downloaded container?? This is the repo i am using https://github.com/ggerganov/whisper.cpp the swiftui app and objective-C app both do the same thing i am witnessing when using coreml. Thanks in advance for any help, i am totally baffled by this behaviour
6
3
1.6k
Aug ’24
CreateML hyperparameters
Hi, I try to create some machine learning model for each stock in S&P500 index. When creating the model(Boosted tree model) I try to make it more successfully by doing hyper parameters using GridSearchCV. It takes so long to create one model so I don't want to think of creating all stocks models. I tried to work with CreateML and swift but it looks like it takes longer to run than sklearn on python. My question is how can I make the process faster? is there any hyper parameters on CreateML on swift (I couldn't find it at docs) and how can I run this code on my GPU? (should be much faster).
0
0
652
May ’24
MLUpdateTask returning no model
Hello, I have created a Neural Network → K Nearest Neighbors Classifier with python. # followed by k-Nearest Neighbors for classification. import coremltools import coremltools.proto.FeatureTypes_pb2 as ft from coremltools.models.nearest_neighbors import KNearestNeighborsClassifierBuilder import copy # Take the SqueezeNet feature extractor from the Turi Create model. base_model = coremltools.models.MLModel("SqueezeNet.mlmodel") base_spec = base_model._spec layers = copy.deepcopy(base_spec.neuralNetworkClassifier.layers) # Delete the softmax and innerProduct layers. The new last layer is # a "flatten" layer that outputs a 1000-element vector. del layers[-1] del layers[-1] preprocessing = base_spec.neuralNetworkClassifier.preprocessing # The Turi Create model is a classifier, which is treated as a special # model type in Core ML. But we need a general-purpose neural network. del base_spec.neuralNetworkClassifier.layers[:] base_spec.neuralNetwork.layers.extend(layers) # Also copy over the image preprocessing options. base_spec.neuralNetwork.preprocessing.extend(preprocessing) # Remove other classifier stuff. base_spec.description.ClearField("metadata") base_spec.description.ClearField("predictedFeatureName") base_spec.description.ClearField("predictedProbabilitiesName") # Remove the old classifier outputs. del base_spec.description.output[:] # Add a new output for the feature vector. output = base_spec.description.output.add() output.name = "features" output.type.multiArrayType.shape.append(1000) output.type.multiArrayType.dataType = ft.ArrayFeatureType.FLOAT32 # Connect the last layer to this new output. base_spec.neuralNetwork.layers[-1].output[0] = "features" # Create the k-NN model. knn_builder = KNearestNeighborsClassifierBuilder(input_name="features", output_name="label", number_of_dimensions=1000, default_class_label="???", number_of_neighbors=3, weighting_scheme="inverse_distance", index_type="linear") knn_spec = knn_builder.spec knn_spec.description.input[0].shortDescription = "Input vector" knn_spec.description.output[0].shortDescription = "Predicted label" knn_spec.description.output[1].shortDescription = "Probabilities for each possible label" knn_builder.set_number_of_neighbors_with_bounds(3, allowed_range=(1, 10)) # Use the same name as in the neural network models, so that we # can use the same code for evaluating both types of model. knn_spec.description.predictedProbabilitiesName = "labelProbability" knn_spec.description.output[1].name = knn_spec.description.predictedProbabilitiesName # Put it all together into a pipeline. pipeline_spec = coremltools.proto.Model_pb2.Model() pipeline_spec.specificationVersion = coremltools._MINIMUM_UPDATABLE_SPEC_VERSION pipeline_spec.isUpdatable = True pipeline_spec.description.input.extend(base_spec.description.input[:]) pipeline_spec.description.output.extend(knn_spec.description.output[:]) pipeline_spec.description.predictedFeatureName = knn_spec.description.predictedFeatureName pipeline_spec.description.predictedProbabilitiesName = knn_spec.description.predictedProbabilitiesName # Add inputs for training. pipeline_spec.description.trainingInput.extend([base_spec.description.input[0]]) pipeline_spec.description.trainingInput[0].shortDescription = "Example image" pipeline_spec.description.trainingInput.extend([knn_spec.description.trainingInput[1]]) pipeline_spec.description.trainingInput[1].shortDescription = "True label" pipeline_spec.pipelineClassifier.pipeline.models.add().CopyFrom(base_spec) pipeline_spec.pipelineClassifier.pipeline.models.add().CopyFrom(knn_spec) pipeline_spec.pipelineClassifier.pipeline.names.extend(["FeatureExtractor", "kNNClassifier"]) coremltools.utils.save_spec(pipeline_spec, "../Models/FaceDetection.mlmodel") it is from the following tutorial: https://machinethink.net/blog/coreml-training-part3/ It Works and I were am to include it into my project: I want to train the model via the MLUpdateTask: ar batchInputs: [MLFeatureProvider] = [] let imageconstraint = (model.model.modelDescription.inputDescriptionsByName["image"]?.imageConstraint) let imageOptions: [MLFeatureValue.ImageOption: Any] = [ .cropAndScale: VNImageCropAndScaleOption.scaleFill.rawValue] var featureProviders = [MLFeatureProvider]() //URLS where images are stored let trainingData = ImageManager.getImagesAndLabel() for data in trainingData{ let label = data.key for imgURL in data.value{ let featureValue = try MLFeatureValue(imageAt: imgURL, constraint: imageconstraint!, options: imageOptions) if let pixelBuffer = featureValue.imageBufferValue{ let featureProvider = FaceDetectionTrainingInput(image: pixelBuffer, label: label) batchInputs.append(featureProvider)}} let trainingData = MLArrayBatchProvider(array: batchInputs) When calling the MLUpdateTask as follows, the context.model from completionHandler is null. Unfortunately there is no other Information available from the compiler. do{ debugPrint(context) try context.model.write(to: ModelManager.targetURL) } catch{ debugPrint("Error saving the model \(error)") } }) updateTask.resume() I get the following error when I want to access the context.model: Thread 5: EXC_BAD_ACCESS (code=1, address=0x0) Can some1 more experienced tell me how to fix this? It seems like I am missing some parameters? I am currently not splitting the Data when training into train and test data. only preprocessing im doing is scaling the image down to 227x227 pixels. Thanks!
0
0
617
Apr ’24
Jax-Metal error: failed to legalize operation of mhlo.fft
Hi, just got an Apple M3 Pro to try it out on some Jax operations. I see the development is actively ongoing so maybe this error can help. This is the environment: Metal device set to: Apple M3 Pro systemMemory: 18.00 GB maxCacheSize: 6.00 GB jax: 0.4.26 jaxlib: 0.4.23 numpy: 1.26.4 python: 3.11.8 | packaged by conda-forge | (main, Feb 16 2024, 20:49:36) [Clang 16.0.6 ] jax.devices (1 total, 1 local): [METAL(id=0)] process_count: 1 platform: uname_result(system='Darwin', node='MKFL96VR9YT', release='23.4.0', version='Darwin Kernel Version 23.4.0: Wed Feb 21 21:44:54 PST 2024; root:xnu-10063.101.15~2/RELEASE_ARM64_T6030', machine='arm64') This is a minimal example which produces an error, I think due to the fft part: from jax import numpy as np array = np.ones((16, 16)) np.fft.fft2(array) This is the full traceback: Traceback (most recent call last): File "/Users/user/Downloads/wow.py", line 5, in <module> np.fft.fft2(array) File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/numpy/fft.py", line 216, in fft2 return _fft_core_2d('fft2', xla_client.FftType.FFT, a, s=s, axes=axes, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/numpy/fft.py", line 210, in _fft_core_2d return _fft_core(func_name, fft_type, a, s, axes, norm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/numpy/fft.py", line 102, in _fft_core transformed = lax.fft(arr, fft_type, tuple(s)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/traceback_util.py", line 179, in reraise_with_filtered_traceback return fun(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/pjit.py", line 298, in cache_miss outs, out_flat, out_tree, args_flat, jaxpr, attrs_tracked = _python_pjit_helper( ^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/pjit.py", line 176, in _python_pjit_helper out_flat = pjit_p.bind(*args_flat, **params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/core.py", line 2788, in bind return self.bind_with_trace(top_trace, args, params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/core.py", line 425, in bind_with_trace out = trace.process_primitive(self, map(trace.full_raise, args), params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/core.py", line 913, in process_primitive return primitive.impl(*tracers, **params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/pjit.py", line 1494, in _pjit_call_impl return xc._xla.pjit(name, f, call_impl_cache_miss, [], [], donated_argnums, # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/pjit.py", line 1471, in call_impl_cache_miss out_flat, compiled = _pjit_call_impl_python( ^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/pjit.py", line 1406, in _pjit_call_impl_python lowering_parameters=mlir.LoweringParameters()).compile() ^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/interpreters/pxla.py", line 2369, in compile executable = UnloadedMeshExecutable.from_hlo( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/interpreters/pxla.py", line 2908, in from_hlo xla_executable, compile_options = _cached_compilation( ^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/interpreters/pxla.py", line 2718, in _cached_compilation xla_executable = compiler.compile_or_get_cached( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/compiler.py", line 266, in compile_or_get_cached return backend_compile(backend, computation, compile_options, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/profiler.py", line 335, in wrapper return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/opt/anaconda3/envs/jaxmetal/lib/python3.11/site-packages/jax/_src/compiler.py", line 238, in backend_compile return backend.compile(built_c, compile_options=options) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ jaxlib.xla_extension.XlaRuntimeError: UNKNOWN: <unknown>:0: error: 'func.func' op One or more function input/output data types are not supported. <unknown>:0: note: see current operation: "func.func"() <{arg_attrs = [{mhlo.layout_mode = "default", mhlo.sharding = "{replicated}"}], function_type = (tensor<16x16xf32>) -> tensor<16x16xcomplex<f32>>, res_attrs = [{jax.result_info = "", mhlo.layout_mode = "default"}], sym_name = "main", sym_visibility = "public"}> ({ ^bb0(%arg0: tensor<16x16xf32>): %0 = "mhlo.convert"(%arg0) : (tensor<16x16xf32>) -> tensor<16x16xcomplex<f32>> %1 = "mhlo.fft"(%0) {fft_length = dense<16> : tensor<2xi64>, fft_type = #mhlo<fft_type FFT>} : (tensor<16x16xcomplex<f32>>) -> tensor<16x16xcomplex<f32>> "func.return"(%1) : (tensor<16x16xcomplex<f32>>) -> () }) : () -> () <unknown>:0: error: failed to legalize operation 'func.func' <unknown>:0: note: see current operation: "func.func"() <{arg_attrs = [{mhlo.layout_mode = "default", mhlo.sharding = "{replicated}"}], function_type = (tensor<16x16xf32>) -> tensor<16x16xcomplex<f32>>, res_attrs = [{jax.result_info = "", mhlo.layout_mode = "default"}], sym_name = "main", sym_visibility = "public"}> ({ ^bb0(%arg0: tensor<16x16xf32>): %0 = "mhlo.convert"(%arg0) : (tensor<16x16xf32>) -> tensor<16x16xcomplex<f32>> %1 = "mhlo.fft"(%0) {fft_length = dense<16> : tensor<2xi64>, fft_type = #mhlo<fft_type FFT>} : (tensor<16x16xcomplex<f32>>) -> tensor<16x16xcomplex<f32>> "func.return"(%1) : (tensor<16x16xcomplex<f32>>) -> () }) : () -> () I'd be happy running more tests should you need them, I'm new to this, so not sure which just yet. Many thanks!!
0
0
842
Apr ’24
Add new Labels to MLImageClassifier of existing Checkpoint/Session
Hey, i just created and trained an MLImageClassifier via the MLImageclassifier.train() method (https://developer.apple.com/documentation/createml/mlimageclassifier/train(trainingdata:parameters:sessionparameters:)) For my Trainingdata (MLImageclassifier.DataSource) i am using my directoy structure, so i got an images folder with subfolders of person1, person2, person3 etc. which contain images of the labeled persons (https://developer.apple.com/documentation/createml/mlimageclassifier/datasource/labeleddirectories(at:)) I am saving the checkpoints and sessions in my appdirectory, so i can create an MLIMageClassifier from an exisiting MLSession and/or MLCheckpoint. My question is: is there any way to add new labels, optimally from my directoy strucutre, to an MLImageClassifier which i create from an existing MLCheckpoint/MLSession? So like adding a person4 and training my pretrained Classifier with only that person4. Or is it simply not possible and i have to train from the beginning everytime i want to add a new label? Unfortunately i cannot find anything in the API. Thanks!
0
0
734
Apr ’24
No Metrics available in MLJob
Hey, im training an MLImageClassifier via the train()-method: guard let job = try? MLImageClassifier.train(trainingData: trainingData, parameters: modelParameter, sessionParameters: sessionParameters) else{ debugPrint("Training failed") return } Unfortunately the metrics of my MLProgress, which is created from the returning MLJob while training are empty. Code for listening on Progress: job.progress.publisher(for: \.fractionCompleted) .sink{[weak job] fractionCompleted in guard let job = job else { debugPrint("failure in creating job") return } guard let progress = MLProgress(progress: job.progress) else { debugPrint("failure in creating progress") return } print("ProgressPROGRESS: \(progress)") print("Progress: \(fractionCompleted)") } .store(in: &subscriptions) Printing the Progress ends in: MLProgress(elapsedTime: 2.2328420877456665, phase: CreateML.MLPhase.extractingFeatures, itemCount: 32, totalItemCount: Optional(39), metrics: [:]) Got the Same result when listening to MLCheckpoints, Metrics are empty aswell: MLCheckpoint(url: URLPATH.checkpoint, phase: CreateML.MLPhase.extractingFeatures, iteration: 32, date: 2024-04-18 11:21:18 +0000, metrics: [:]) Can some1 tell me how I can access the metrics while training? Thanks!
1
1
610
Apr ’24
Getting issue in convert PyTorch model to CoreML using CoreMLTool Kit.
Hello Developers, We are trying to convert Pytorch models to CoreML using coremltools, while converting we used jit.trace to create trace of model where we encountered a warning that if model has controlflow and conditions it is not advisable to use trace instead convert into TorchScript using jit.script, However after successful conversion of model into TorchScript, Now in the next step of conversion from TorchScript to CoreML here is the error we are getting when we tried to convert to coremltools python package. This root error is so abstract that we are not able to trace-back from where its occurring. AssertionError: Item selection is supported only on python list/tuple objects We trying to add this above error prompt into ChatGPT and we get something like the below response from ChatGPT. But unfortunately it's not working. The error indicates that the Core ML converter encountered a TorchScript operation involving item selection (indexing or slicing) on an object that it doesn't recognize as a Python list or tuple. The converter supports item selection only on these Python container types. This could happen if your model uses indexing on tensors or other types not recognized as list or tuple by the Core ML tools. You may need to revise the TorchScript code to ensure it only performs item selection on supported types or adjust the way tensors are indexed.
0
0
783
Mar ’24