Post

Replies

Boosts

Views

Activity

why there's nerual engine-data copy in coreml npu prediction
I am currently facing a performance issue while using CoreML on iOS 16+ devices to run a simple grid_sample model. When profiling the model using xcode Profiler, I noticed that before each NPU computation, there is a significant delay caused by the "input copy" and "neural engine-data copy" operations.I have specified that both the input and output of the model are of type float16, there shouldn't be any data type convert. I would appreciate any insights or suggestions regarding the reasons behind this delay and possible solutions My simple model is class GridSample(torch.nn.Module): def __init__( self, ): super().__init__() def forward(self, input: torch.Tensor, grid: torch.Tensor) -> torch.Tensor: output = F.grid_sample( input, grid.to(input), mode='nearest', padding_mode='zeros', align_corners=True, ) return output tr_input = torch.randn((8, 64, 512, 512) tr_grid = torch.randn((8, 256, 256, 2) simple_model = GridSample() simple_model.eval() traced_model = torch.jit.trace(simple_model, [tr_input, tr_grid]) coreml_input = [coremltools.TensorType(name="image_input", shape=tr_input.shape, dtype=np.float16), coremltools.TensorType(name="warp_grid", shape=tr_grid.shape, dtype=np.float16)] mlmodel = coremltools.converters.convert(traced_model, inputs=coreml_input, convert_to="mlprogram", minimum_deployment_target=coremltools.target.iOS16, compute_units=coremltools.ComputeUnit.ALL, compute_precision = coremltools.precision.FLOAT16, outputs=[ct.TensorType(name="x0", dtype=np.float16)], debug=False) mlmodel.save("./grid_sample.mlpackage") os.system(f"xcrun coremlcompiler compile './grid_sample.mlpackage' './')
0
0
735
Feb ’24